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Abstract— This paper proposes an approach for the auto-
mated segmentation and identification of movement segments
from continuous time series data of human movement, collected
through motion capture of ambulatory sensors. The proposed
approach uses a two stage identification and recognition pro-
cess, based on velocity and stochastic modeling of each motion
to be identified. In the first stage, motion segment candidates
are identified based on a unique sequence of velocity features
such as velocity peaks and zero velocity crossings. In the
second stage, Hidden Markov models are used to accurately
identify segment locations from the identified candidates. The
approach is capable of on-line segmentation and identification,
enabling interactive feedback in rehabilitation applications. The
approach is validated on a rehabilitation movement dataset, and
achieves a segmentation accuracy of 89%.

I. INTRODUCTION

Physical rehabilitation is a branch of modern health care

that focuses on the development, maintenance and restoration

of body movement and function, particularly after injury

or surgery. A rehabilitation session consists of a physio-

therapist’s assessment of the patient’s current condition, as

well as the performance of physical exercises recommended

by the physiotherapist. Typically, the physiotherapist will

supervise the performance of the exercises to determine

patient progress, as well as provide corrective feedback.

Technology to measure and analyze human motion has the

potential to provide the physiotherapist with more accurate

tools for assessment and progress measurement, as well as

to provide the patient with real-time feedback.

To enable automated measurement and analysis, the sys-

tem must measure the human movement and identify exercise

movement segments from the time series data. Human move-

ment can be measured via either motion capture systems

[1], [2] or ambulatory sensors such as inertial measurement

units (IMUs) [3]–[5]. Given the measured time series data,

segmentation is the process of identifying the starting and

ending locations of each movement of interest. If the pa-

tient is performing more than one type of exercise in a

given recording session, identification (i.e., labeling) of each

segment with the appropriate exercise type is also required.

Both segmentation and identification are made more difficult

due to the variability observed in human movement. Motion

can vary between individuals due to differing kinematic or

dynamic characteristics between individuals, and as well

within a single individual over time, due to short term factors

such as fatigue, or long term factors such as recovery or
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disease progression. Moreover, these factors can introduce

both spatial and temporal variability. Thus, for rehabilitation,

a good segmentation algorithm must be able to handle

both temporal and spatial variations. A computationally light

algorithm is also desired, in order to perform segmentation

on-line, to allow real-time feedback to the patients.

Time series data segmentation for human movement is

an active area of research. A common approach is to rely

on known motion templates to assist in the identification

of motions. Dynamic Time Warping (DTW) is one exam-

ple of a template-based method. DTW [6] identifies the

temporal variations between the observed motion and the

motion template by selectively warping the time scale of an

observation sequence to the template, based on a distance

metric. Therefore segments can be accurately segmented

and identified even with significant spatial and temporal

variation between the observation and the template. However,

DTW becomes very computationally expensive with higher

dimensionality, preventing it from being utilized on-line.

If the motions to be observed are not known a priori,

then non-template based methods are required. The Zero-

Velocity Crossing (ZVC) approach identifies points where

the velocity value changes sign, i.e., when a joint segment

changes directions [7], as segment points. Although a fast

algorithm, ZVC tends to over-segment, particularly with

noisy data or as the number of DoFs increases. Since ZVC

methods do not consider motion templates, it is difficult to

tell which crossing points can be safely ignored.

An alternative method is to employ probabilistic algo-

rithms, and look at changes in signal variance [8] or proba-

bility distribution [9] to indicate segmentation points. On-

line template construction has also been proposed [10],

by clustering together previously segmented sequences to

generate new templates on the fly.

In clinical settings, the patient’s exercises are prescribed by

the therapist, and thus templates can be utilized. Templates

encoded as Hidden Markov models (HMMs) can be used as

to assess the similarity between a template and an observa-

tion sequence. The observation data can be split into smaller

components, and recombined based on principle component

analysis coefficients, and compared against a HMM [11].

Alternatively, the templates could be used as a weak classifier

in a larger algorithm, such as AdaBoost [2].

This paper proposes a template-based on-line technique

that combines the ZVC and the HMM techniques. The

system consists of a training phase, where exemplar data are

used to create feature and HMM motion templates, and a

segmentation phase, where the observed data is swept for
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characteristic features that matches the feature templates.

When a feature match is found, the HMM template is used to

determine the closeness of match and remove similar looking

motions. The initial framework in [12] is expanded with

a generalized approach for constructing templates capable

of handling arbitrary DoF motion, where any number of

DoFs may be moving simultaneously. The algorithm is tested

on the motions of five subjects, performing three typical

rehabilitation motions.

II. PROPOSED APPROACH

In order to meet the time constraints of a real-time system,

the segmentation and identification algorithm should be as

computationally efficient as possible. The feature-guided

HMM [12] is a fast algorithm that employs a 2-tier approach

to motion identification. The observation data is first scanned

for characteristic features, consisting of velocity peaks and

ZVCs, to estimate the locations of segment candidates. This

reduces the number of times that the more computationally

expensive but accurate HMM algorithm is required to run,

thus reducing the computational costs of the algorithm.

A. Hidden Markov model

The Hidden Markov model [13] is a stochastic model

where the process being modeled is represented by an

evolving unobservable state. This underlying state is inferred

by the probabilistic relationship between the hidden state

and its corresponding observable output. The state has the

Markov property, i.e., the next state depends only on the

current state. The HMM stores its model information as

a set of three variables: the initial state distribution, the

state transition matrix, and the observation distribution. For

continuous observation variables, such as human motion

data, Gaussian or mixture of Gaussians distributions are used.

To assess the similarity between a trained model and a

new observation sequence, the forward algorithm [13] is

applied. The forward algorithm calculates the likelihood that

the observation data could have been generated by the model.

B. Template training

To reduce the need to apply the forward algorithm to

each segment candidate, a two stage recognition process

is applied. For each motion, two types of templates are

prepared: a feature profile and an HMM profile. Given an

exemplar motion from which a template is to be created, the

feature extraction notes the locations of velocity crossings

and velocity peaks of the exemplars. Since the motions

examined in this paper are rehabilitation exercises and thus

exhibit regular patterns of flexion and extension cycles, the

feature template would be expected to consist of a ZVC,

then a positive or negative peak, then another ZVC, the

opposite peak, and a final ZVC. The magnitudes of the peaks

(vp) and peak-to-peak times (tpp) are also stored in order to

reject insignificant motions from triggering a feature match.

Only significant DoFs of the motion are used for template

matching at the feature stage. Significant DoFs are identified

by calculating the standard deviation of each of the joints in

the template and grouping them via 2-means clustering, and

selecting the DoFs grouped with the higher centroid.

Instead of expecting a specific set of ZVCs and veloc-

ity peaks, as was proposed in [12], the template training

sequence now searches for ZVCs in the template, and

characterizes the peaks between each ZVC. If the velocity

peaks between two ZVCs are small, defined as a percentage

of the maximum or minimum peak over the whole exemplar,

that peak is rejected as a feature. Each of the exemplar

motions will have its features extracted in this manner, and

the template characteristics, that is, its sequence of velocity

peak directions and ZVCs, over each of the exemplars are

compared. If a majority of the exemplars have identical

template characteristics, then that characteristic sequence is

used. Next, the velocities of the significant DoFs for a given

template are multiplied together, to create a scalar estimate

of the overall velocity and estimate the ZVCs and velocity

peaks. With this approach, the same algorithm can be used

regardless of the dimensionality of the input. It is also

simpler to threshold on a single aggregated velocity signal

instead of on several independent DoFs.

The exemplars are also used to train HMMs with the

Baum-Welch algorithm [13]. An 8-state left-right model is

used. The Gaussian observation functions are initialized by

k-means clustering. The threshold for recognition (TR) is also

determined, via leave-one-out cross-validation (LOOCV).

C. Feature Guided Segmentation

During the on-line segmentation phase, a small sliding

window is passed over the observation data, noting the local

peak values and ZVCs of each of the DoFs. A ZVC is

declared if the velocity makes a zero-crossing, or if is very

low for several timesteps. Local peak values are tracked by

an internal buffer. If the current window has a peak value

higher then the stored peak value, the peak value in the

buffer is updated accordingly. To avoid noise spikes in the

velocity data from affecting the template matching, the peak

buffer value is attenuated if it does not contribute to a match

after several seconds, to prevent a large spike in the velocity

from preventing feature matches. If a given DoF observes a

sequence of ZVCs and peaks that matches a known template,

then the algorithm has located a potential segment point.

The velocity magnitudes and peak-to-peak distance must

exceed vp and tpp respectively in order for a potential seg-

ment point to be declared. This prevents noise, such as when

the subject is stationary, from triggering the feature match.

The template and window edge combination that results in

the highest likelihood value over the threshold TR is declared

a segment. All window edge combinations are resampled so

they are all equal length, to prevent the forward algorithm

from favouring shorter sequences. Following HMM template

matching, the recorded peak magnitude and ZVCs are reset,

and the feature search resumes at the next time step.

III. EXPERIMENTS AND RESULTS

The algorithm was tested on five subjects performing

three types of physiotherapy exercises: knee extensions while
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Fig. 1. Joint angles (top) and angular velocity (bottom) of a subject
performing hip flexions. Despite the amount of noise in the other DoFs,
the algorithm is successfully segmentation the motion under examination.

seated, squats, and hip flexions while supine. The average

age of the participants was 22 years old. The experiment

was approved by the University of Waterloo Research Ethics

Board, and signed consent was obtained from all participants.

Each motion was performed twice, with ten repetitions

each. For each subject, the first motion set was used for the

template training, then both motion sets were used for testing

the proposed algorithm. The templates used were subject spe-

cific, so the templates generated from one subject’s motions

was used to segment only their own motion.

The data was recorded with a set of IMUs, and translated

to joint angles via an extended Kalman filter. The subjects

were modeled as a 5 DoF system. Motion capture data was

collected simultaneously; ground truth manual segmentation

was determined by a human observer using video playback

of the motion capture data.

In order to compare the proposed approach to existing

work, a ZVC method, described in [14] was implemented.

Segmentation points are declared when the velocity crosses

zero. To reduce the amount of spurious ZVCs, only ZVCs

that occurred on the significant DoFs were declared. A

fixed-sliding window HMM was also implemented. HMM

construction for the fixed sliding window was identical to

the feature guided HMM. The fixed window length was

computed from the lengths of the exemplar templates. Seg-

mentation points were declared on local maximas of the

likelihood, as long as it is above some likelihood threshold.

All processing and algorithmic implementation were done

in MATLAB 7.12. The HMM functions were implemented

with Murphy’s HMM MATLAB Toolbox [15].

A. Segmentation results

A algorithmic segmentation point was declared correct if

it falls within ±terror of a manual segment point. It is a

false positive if an algorithmic segment point was declared

when there is not one. It is a false negative if a segment

Fig. 2. Joint angles (top) and angular velocity (bottom) of a subject
performing squats. The boxes indicate the algorithmic segmentation points,
whereas the circles indicate manual segmentation points. The black lines
indicate significant DoFs, whereas the gray lines are not significant DoFs.

TABLE I

SEGMENTATION RESULTS, WITH terror = 0.20s

Total Correct False
positive

False
negative

Knee extension 206 188 (91%) 2 18

Hip flexion 218 187 (86%) 2 31

Squats 200 179 (90%) 0 21

Total 624 554 (89%) 4 70

point was not declared when there should be one. Each

segment’s two segment points are awarded points separately.

That is, a completely correct segment could receive +2

correct, whereas a partially correct segment could receive

+1 correct and +1 false negative. The segmentation results

for the feature-guided HMM with terror = 0.2s can be found

in Table I, and show that the algorithm correctly determined

89% of the segments. If terror = 0.3s, the accuracy increases

to 93%, implying that a number of the algorithmic segments

are just outside of the manual segment error bounds.

Fig. 1 and 2 show examples of the segmentation algorithm.

The boxes indicate the algorithmic segmentation points,

whereas the circles indicate manual segmentation points. Fig.

1, showing hip flexions, demonstrates that the algorithm is

able to produce good segmentation results even when large

TABLE II

SEGMENTATION RESULTS COMPARED TO OTHER ALGORITHMS. TOTAL

SEGMENT POINTS = 624

terror Algorithm Correct False
Pos.

False
negative

0.2

ZVC 303 (49%) 1032 429
Fixed HMM 78 (13%) 408 546
Feature HMM 554 (89%) 4 70

0.3

ZVC 309 (50%) 1080 365
Fixed HMM 95 (15%) 392 529
Feature HMM 580 (93%) 0 44

2883



motions are occurring in the other DoFs. It can be noted that

the manual segmentation points here exhibit significant offset

from the algorithmic segmentation points, causing these

points to be declared as false negatives. Several different

factors contribute to this. Since there are no standardized

guidelines on how a motion sequence should be segmented,

manual segmentation is typically left up to the perception

of the human observer. Although manual segment points are

typically used as ground truth, there may be inconsistencies

between observers. It is difficult to visually determine when

a segment has started or ended, due to stray motion or

tremors at segment ends, causing manual segments to be

declared after the actual segmentation point. Fig. 2 shows

that sometimes the algorithm overestimates the bounds of

the segments, as the motion may have been perceived to

have ended due to slow velocity before the actual ZVC.

The feature-guided HMM compares favourably against

previous algorithms. Table II shows the feature-guided

HMM’s error metrics compared against ZVC and fixed-

window HMM, at different terror. Although feature-guided

HMM segments along ZVC points, its ability to reject

spurious crossings as opposed to the ZVC algorithm’s naive

approach greatly improves the segmentation accuracy and

reduces the number of false positives. Fixed-window HMM

performed poorly. Its inability to change its window size,

which is the average length of the templates, means that

even though it is good at identifying the underlying motion,

it is not able to suggest accurate segmentation bounds.

B. Timing results

Table III shows the timing results for each of the examined

algorithms. The exemplar length is the average length of each

observation sequence. The template construction time is the

average time taken to construct all relevant template data for

a given subject. The segmentation time is the average time

required to segment one set of observation data.

Due to its simplicity, the ZVC algorithm requires no

template training time and very little segmentation time.

However, as noted in the previous section, this algorithm

is very inaccurate. Fixed-window HMM uses the Baum-

Welch algorithm to train the HMMs based on exemplar

data, and requires a significant amount of training time.

Its segmentation time is also very long, as it needs to run

the forward algorithm numerous times at each time step,

once for each template available. The feature-guided HMM

requires the most training time. Although the HMM training

component is identical to the one utilized the fixed-window

HMM, the additional training time comes mainly from the

LOOCV method to determine likelihood thresholds. The

feature extraction component takes very little time. With

the feature-guiding, the proposed algorithm is able to more

intelligently determine when to apply the forward algorithm,

and decrease the segmentation runtime significantly.

IV. CONCLUSIONS AND FUTURE WORKS

Feature-guided HMM segments data with high accuracy. It

does so by reducing the comparison space of the observation

TABLE III

TIMING RESULTS COMPARED TO OTHER ALGORITHMS

Exemplar
length

Template
construction

Segmentation
time

ZVC 37.44 0.00 0.13

Fixed HMM 37.44 26.28 63.30

Feature HMM 37.44 249.42 4.35

data by looking at significant DoFs, velocity peaks and

ZVCs, to estimate locations of segment potentials. When

such segment potentials are located, the sequence under

examination is checked with against an HMM to find the

most accurate segmentation and identify the motion.

We plan to apply the algorithm to a larger dataset to

assess the algorithm against a wide set of motion types.

A specific weakness of the current implementation is that

subject-specific templates are used. This is impractical in

clinical settings, as it would require that each patient provide

a template a priori. In future work, we will test the algorithm

by using a single set of templates against the motion data

of other multiple users, in order to assess how well this

algorithm scales against interpersonal variations.
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