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Abstract— Frequency analysis based on the Hilbert-Huang 

transform (HHT) is examined as an alternative to Fourier 

spectral analysis in the study of EEG signals. This method 

overcomes the need for the EEG signal to be linear and 

stationary, assumptions necessary for the application of Fourier 

spectral analysis. The HHT method comprises two components: 

empirical mode decomposition (EMD) of the signal into intrinsic 

mode functions (IMF’s); and the Hilbert transform of the 

IMF’s. This technique is applied here in the study of consecutive 

eyes open (EO), eyes closed (EC) EEG signals of able bodied 

and spinal cord injured participants. The study found that in 

this EO, EC pair the instantaneous frequencies in the EO state 

were higher compared to the EC state. The Hilbert weighted 

frequency, a measure of the mean of the instantaneous 

frequencies present in an IMF, is used here to detect these 

changes from EO to the EC state in an EEG signal. Although 

there was a good detection of this change with information 

obtained from just one IMF (94% in able-bodied persons and 

84% in SCI persons), almost 100% success in detecting 

between group differences was achieved using all the IMF's. 

This result has implications for assistive technology that rely on 

EEG changes in EO and EC states. 

I. INTRODUCTION 

Experimental data is often non stationary and non-linear, 
however, many data analyses have been carried out treating 
the data as if it is linear and stationary, when in reality it may 
not be. For example, in spite of the many publications on 
non-linear dynamical measures and dynamical system analysis 
of electroencephalogram (EEG) time series [1-8]; and the use 
of long time series that allow for non-stationary behavior, 
Fourier spectral analysis is still widely used in the frequency 
analysis of EEG data. Fourier spectral analysis is based on 
the assumption that the signal is stationary and linear. These 
assumptions are overcome in a technique based on the 
Hilbert-Huang Transform (HHT) [9,10,11,12]. In contrast to 
transforms like the Fourier transform, HHT is more like an 
algorithm, an empirical approach that can be applied to a data 
set rather than a theoretical tool.  
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The HHT procedure is comprised of two distinct 
components: Empirical Mode Decomposition (EMD); and 
the Hilbert Transform of each of the modes obtained from 
the EMD to produce a Hilbert Spectrum. EMD is an adaptive 
decomposition of data which results in the extraction of 
Intrinsic Mode Functions (IMF’s). These IMF’s have well 
prescribed instantaneous frequencies, defined as the first 
derivative of the analytic signal. These instantaneous 
frequencies and amplitudes of these IMF’s are obtained using 
the Hilbert transform.  Using the EMD method, any 
complicated data set can be decomposed into a finite and 
often small number of components referred to as IMF’s. By 
definition, an IMF is any function with the same number of 
extrema and zero crossings, with its envelopes being 
symmetric with respect to zero. The definition of an IMF 
guarantees a well-behaved Hilbert transform of the IMF. This 
decomposition method operating in the time domain is 
adaptive and highly efficient. Since the decomposition is 
based on the local characteristic time scale of the data, it can 
be applied to nonlinear and non-stationary processes.  

Recent EEG studies have proposed using empirical mode 
decomposition (EMD) and the Hilbert transform in seizure 
classification [13], classification of motor imagery [14] and 
detection of synchronization [15]. In this paper, frequency 
analysis procedure based on HHT is applied in the analysis of 
eyes open (EO) and eyes closed (EC) EEG data of able 
bodied and spinal cord injured (SCI) persons. The study 
focuses on distinguishing consecutive EO, EC states in an 
EEG signal when eye closure occurs. This study on the EO, 
EC states of able and SCI persons is of interest since the 
Mind Switch Control System (MSCS),  developed to help 
disabled people control electrical devices, is based upon 
changes in EEG signals between the two states [16, 17].  
Electrical devices such as a television can be switched on and 
off and volume and channels can be selected using the MSCS 
signaled by changes in EO and EC states.  

II. METHODS 

A.  Empirical Mode Decomposition and the HHT  

Central to the HHT is the idea of instantaneous 
frequency. The instantaneous frequency is simply the 
frequency of the signal at a single time point. Since this is 
described using the signal’s Hilbert transform, this is 
described first before introducing the empirical mode 
decomposition. For an arbitrary time series, x(t) , its Hilbert 
Transform  y(t) is defined as [18].   
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where P indicates the Cauchy principal value. With this 
definition, an analytic signal z(t) is defined as: 
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The instantaneous frequency is then defined as  
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However it is necessary for  the data for the instantaneous 

frequency defined by equation (4) to be a single valued 

function of time, that is, at any given time, there is only one 

frequency value. Based on the discussion in [11], Huang et 

al., proposed a class of functions referred to as IMF’s derived 

from the original time series that will provide an 

instantaneous frequency as defined by equation (4). 

 An IMF satisfies two conditions. The first condition is that 

the number of extrema and the number of zero crossings 

must either equal or differ by one in the whole data set. The 

other is that the local average defined by the average of the 

maximum and minimum envelopes is zero. These properties 

of IMF’s allow for defining the instantaneous frequency and 

amplitude in an unambiguous way. Based on the defining 

requirements of an IMF, the process of extracting the IMF’s 

from a given signal x(t), t=1,..T  is as follows: 

 

1. Identify the extrema of the data set x(t) , and form the 

envelopes defined by the local maxima and minima 

respectively by the cubic spline interpolation method. 

2. Form the mean values )(1 tm  by averaging the upper 

envelope and lower envelope, and subtract the mean values 

from the data to get the first component: 

               )()()( 11 tmtxth   

3. Check whether the conditions for an IMF are satisfied. If 

the first component is not an IMF, let )(1 th be the new data 

set. Continue with steps 1 and 2 until the first component is 

an IMF. 

4. Let the first IMF component be )(1 tc . Let 

)()()( 11 tctxtr  . Continue with steps 1-3  until )(1 tr  

is smaller than a predetermined value or becomes a 

monotonic function where no more IMF’s can be extracted. 

 The first component )(1 tc  contains the finest scale or the 

shortest period component of the signal. The higher 

components )(),...(2 tctc N contain progressively the longer 

period components. Even for data with zero mean, the final 

residue )(trN can be different from zero. For data with a 

trend,  )(trN  is a trend. At the end of this process, the 

signal x(t) can be expressed as follows: 
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where N is the number of intrinsic mode functions. By virtue 

of the decomposition, completeness is given by equation (5). 

Orthogonality of the IMF’s is satisfied for all practical 

purposes although it is not guaranteed theoretically [19]. 

 The IMF’s are physical, since the characteristic scales are 

physical. However in cases where a certain scale of a 

phenomenon is intermittent, then the component contains 

two scales in one component [10]. On the other hand, for 

other decompositions such as the Fourier expansion, even 

with the entire set of decomposed components, sound 

physical interpretation is not guaranteed.   

B. Hilbert Spectrum 

 After obtaining the intrinsic mode function components the 

Hilbert transform is then applied to each IMF. In some cases 

the residue is not included, not because of the inability of the 

Hilbert transform to treat a trend but due to the high energy 

involved in this residue that can be overpowering.  However 

in this paper the residue is included and is treated as the last 

IMF. The original data )(tx can then be expressed as: 
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where (N+1) corresponds to the inclusion of the residue 

)(trN to the N  IMF’s. R corresponds to the real part of the 

expression in the parenthesis. Equation (6) gives the 

amplitude and frequency of each component as a function of 

time. The set { TtNjtAj ,...1);1,...(1|,)(|  } , 
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constitute the amplitude Hilbert spectrum in EMD. Here T is 

the number time samples in the data set x(t).   

C. Hilbert weighted frequency (hwf) 

 For each IMF we evaluate the Hilbert weighted frequency 

(hwf). The Hilbert weighted frequency is defined as [14,21]:       
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 This Hilbert weighted frequency provides an idea of the 

mean frequency using instantaneous information. 

D. Participants 

 EEG data used for this study were taken from thirty able-

bodied participants (17males and 16 females) with mean age 

of 38.4 years (SD=10.3) and 17 SCI participants (16 males 

and one female) with mean age of 33.7 years (SD= 10.1).  

The SCI group was a composed of tetraplegic (n=7) and 

paraplegic (n=10) participants mostly with complete breaks 

(n=2 incomplete). All participants consisted of volunteers 

living in the community. All participated in a structured 

interview immediately prior to the study in order to 

determine their health status. Participants were included only 
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if they were overtly free of viral or bacterial disease, and 

reported no prior psychopathology. Participants were also 

included if they were not taking any medication that could 

potentially affect the recording of the EEG (eg. anti-

depressants). The study was approved by the institutional 

research ethics committee and participants were only entered 

into the study after informed consent. 

E. EEG Procedure 

 Able-bodied EEG data was collected using the 

Neurosearch-24 data acquisition system (Lexicor Medical 

Technologies, Boulder, CO, USA). All silver/silver chloride 

electrodes were referenced to linked earlobes and impedances 

were kept below 8k. EEG data signals were acquired at a 

sampling rate of 128 Hz and the gain set at 16K to ensure 

waveform resolution was not lost. Low-pass filter was set at 

50Hz to reduce any electrical noise. The SCI EEG data was 

collected using the Biosemi
TM

 Active-OneSystem. EEG 

signals were recorded following the International 10-20 

Montage system sampled to 256 Hz covering the major areas 

of the brain [20]. This was down sampled to 128 Hz for this 

study, so that the number of IMF’s will be comparable to the 

able-bodied sample and thus facilitating interpretation. In 

both the able-bodied and SCI group only EEG activity from 

the cortical site O2 was used. All participants were assessed 

for their EEG activity in sessions of two minutes, which 

included three consecutive measures of EC and EO. For the 

able bodied sample, the participant closed his/her eyes at 

t=22, 62 and 102 s. In the case of SCI participants, eye 

closure occurs at t=8, 48 and 88 s. In the case of able bodied 

participants there were 99 consecutive pairs of EO and EC 

periods, while there were 51 in the case of the SCI sample. In 

our analysis 10s samples of EEG in each of EC and EO 

periods were used.    

III. RESULTS 

 Figure 1 shows the time series of a 10s eyes open EEG 

record of a representative able bodied participants  sampled 

at 128Hz after detrending and removal of mean.     

 

 

 

 

 

 

Figure 1.  The time series of the 10s  eyes open EEG signal  collected 

from the occipital site.  

 To determine whether the above EEG signal is 

stationary a weak definition of stationarity is employed. The 

method used determines whether the mean, and variance 

changes with time. The presence of such changes is indicative 

of non-stationary behavior. The mean and variance of 

overlapping 2s segments separated by 0.0781s (10 samples) 

was -0.14 0.60 and 20.17 3.88 (  refers to the SD). On 

the other hand  the  mean and the variance of the full record 

was 0 and 19.33. The results thus indicate that the above 

time series exhibits non-stationary behavior.  

 Fig 2 shows the intrinsic mode functions and the residue 

from EMD for the EEG data shown in Fig1. There were 7 

IMF’s and 1 residue.  

 

 

 

 

 

 

Figure 2.  The IMF’s   and residue of EO. The bottom plot corresponds to 

IMF (1) with plots arranged from bottom to top in ascending order of mode 

functions. The top plot corresponds to the residue IMF(8).  

 This section reports the results of the study on the 

consecutive EO and EC states of an EEG signal using the 

HHT method. As previously seen an EEG signal can be 

written as a sum of IMF’s. Each of these IMF’s represents an 

oscillatory mode, but instead of a constant amplitude and 

frequency, it has variable amplitude and frequency. It is the 

frequency content of the IMF’s that is being utilized in this 

study. This was performed using the Hilbert weighted 

frequency (hwf)(eqn.7) which gives the mean frequency of an 

IMF. The analysis is carried for the 99 EO, EC pairs of EEG 

signals of able bodied participants and the 51 EO, EC pairs of 

the SCI participants. The hwf are given for the 8 IMF’s in 

Table 1 and Table 2 for the able bodied and SCI samples 

respectively. Dependent t-tests were carried out on the 

samples of hwf . The observed mean was shown to be 

greater than zero in all the IMF’s. The probability values (p-

value) in the t-test obtained for the different IMF’s are 

included in each Table. 

TABLE I.   MEAN OF ( hwf ) FOR THE 99 EO, EC PAIRS OF ABLE-

BODIED PARTICIPANTS  

IMF 1 2 3 4 5 6 7 8 

hwf

 

2.46 1.15 0.27 0.21 0.20 0.10 0.04 0.02 

p-

value 

1.2(-

8) 

2.5(-

7) 

0.02 0.004

5 

7.6(-

6) 

4.7(-

5) 

3.4(-

4) 

0.007

5 
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TABLE II.   MEAN OF ( hwf ) FOR THE 51 EO, EC PAIRS OF SCI 

PARTICIPANTS  

IV.  DISCUSSION 

  The results of both Table 1 and Table 2 shows that the 

frequency content in each IMF is  higher in EO when 

compared with the corresponding IMF in the EC state.  This 

result can be utilized to distinguish consecutive EO, EC 

states. For example the frequency distribution of an  EO  

signal which contains 8 IMF’s (including the residue)  can be 

represented  as an 8 component  row matrix  

],,,,,,,[ 87654321

oooooooo ffffffff   where 
o

if , i=1,..8  

are the hwf  frequencies of the EO state. A similar row matrix 

can be written for the consecutive EC state as 

],,,,,,,[ 87654321

cccccccc ffffffff  where 
c

if , i=1,..8  

are the hwf  frequencies of the EC state.  Although the 

differences in the frequencies )( c

i

o

ii fff   are 

statistically significant for all i, the differences decrease with 

an increase in i. For the able bodied data, the percentage of 

EO-EC pairs where if >0 is found to be 93.9, 81.8, 74.8, 

70.7, 59.6, 56.6, 57.6 and 62.6 for i=1, 2, 3, 4, 5, 6, 7 and 8 

respectively. For the SCI data this result is 84.3, 76.5, 64.7, 

62.8, 76.5, 70.6, 68.6 and 62.8 for i=1, 2, 3, 4, 5, 6, 7 and 8 

respectively. Thus using only the first IMF, the percentage of 

pairs where 1f >0 was nearly 94% satisfied for able bodied 

participants and 84 % for SCI participants. However if all 

IMF’s are used along with the condition that any if >0, 

i=1, 2, 3, 4, 5, 6, 7,8  is sufficient to detect EO-EC changes, 

then the success rate of meeting the required condition 

increases  to 99% for able bodied participants and 100 % for 

SCI participants. 

 The key value of using the HHT technique to study the 

changes in the consecutive EO, EC states in an EEG signal is 

that there is no assumption made about the data being linear 

and stationary. In contrast, this assumption is made in all 

Fourier spectral analysis. In the study of EO, EC states using 

Fourier spectral analysis, it is assumed that all frequencies are 

present in both states. This distinction is made using the 

amplitudes of certain frequency components such as changes 

in alpha wave activity at 8-13Hz [17]. The method used here 

differs from the above in that it does not assume all 

frequencies are present in both states. In fact, discrimination 

is achieved here using the different frequencies present in the 

two states. Therefore, the application of the HHT method to 

analyzing EO and EC EEG data for driving hands-free 

control for severely disabled people should potentially 

improve the reliability of their control of selected devices.    
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IMF 1 2 3 4 5 6 7 8 
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p-

value 

8(-21) 3(-13) 7(-7) 6(-7) 0.002 0.006 0.006 0.023 
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