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 Abstract— This paper examines the assumption of stationarity 

used in EEG brain activity analyses, despite EEG data often 

being non-stationary. Transformations necessary to obtain 

stationary data from measured non-stationary EEG data and 

methods to assess non-stationarity are illustrated using eyes 

open (EO) and eyes closed (EC) data. The study shows that 

even short time EEG records of 10s duration exhibit non-

stationary behavior. Examination of the change in variance 

when going from the EO to the EC state for both able bodied 

and spinal cord injured participants show that the difference in 

variance is consistently positive and statistically significant only 

when stationary data is used. This has implications for brain 

computer interfaces that utilizes changes in EO and EC EEG 

signals.  

I. INTRODUCTION 

 The changes that occur in alpha (8-13Hz) brainwave 

activity from a reduced and desynchronized state during 

visual stimulation (eyes opened), or mental effort, to a 

dominant synchronized form during a relaxed state, or eye 

closure, is a well known phenomenon [1]. The increase in 

alpha activity during eyes closed has been shown to be 

produced voluntarily by most people [2]. There has been 

much interest in using eyes open and eyes closed EEG by 

researchers as it has often been associated with arousal levels 

[3] and has been used as a marker for daytime sleepiness [4] 

as well as a switching mechanism in brain-computer 

interfaces (BCI).  For instance, eyes open (EO) and eyes 

closed (EC) alpha wave activity has been used in the Mind 

Switch environmental control System (MSECS) by detecting 

increased alpha wave power during eye closure. The MSECS 

uses this increase as an on-off switch for electrical devices 

[5,6]. For the MSECS, Fast Fourier Transforms (FFT) is 

used to decompose the EEG signal to separate frequency 

bands; changes in EEG alpha activity are then used as a 

switch. Similarly the NEU-II BCI [7] also utilizes the change 

in alpha wave activity as an on-off switch for electrical 

devices using wavelet transforms. Aside from BCI devices, 
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research has also focused on using changes in alpha wave 

activity to detect mental stress [8] as well as utilizing the 

ratio between eyes open and eyes closed alpha activity as a 

marker for daytime sleepiness [4]. 

 EEG signals can be represented as time series data 

measured on a dynamic system that represents brain activity 

[9]. It is well known that EEG signals are non-stationary 

[9,10]. However, EEG signals are often analyzed using 

methods that assume stationarity in the signal, such as FFT.  

Non-stationary data is unpredictable and cannot be modeled 

or used for forecasting. The results obtained using non-

stationary data could lead to results that are inconsistent, 

unreliable and not characteristic of the system. The power 

spectral density and cross spectral density are often used in 

the analysis of an EEG signal in the frequency domain and 

this works only if the signal is, in a weak sense, a stationary 

process [11]. Thus, the use of non-stationary time series can 

lead to erroneous results, unless appropriate analysis 

techniques are used where the stationarity assumption is not 

invoked. 

 This paper focuses on the assessment of non-stationary 

behavior of the EEG signal and the transformation necessary 

to obtain stationary data. The transformations that give rise 

to stationary data from non-stationary data are then applied 

to study the effect it has in the differences in variance 

between EO and EC conditions for both able-bodied and 

spinal cord injured (SCI) participants. The two conditions, 

that is, the EO and EC states is of interest since assistive 

technologies like the MSECS are based upon reliable changes 

between the EO and EC conditions [5,6].  

II. METHODS 

A. Participants and EEG Procedure 

 EEG data used for this study were obtained from thirty 

able-bodied participants (17males and 16 females) with mean 

age of 38.4 years (SD= 10.3), and 17 SCI participants (16 

males and one female) with mean age of 33.7 years (SD= 

10.1). The SCI group was a mixture of tetraplegic (n=7) and 

paraplegic (n=10) participants mostly with complete breaks 

(n=2 incomplete). All participants consisted of volunteers 

from the community. The study was approved by the 

institutional research ethics committee and participants were 

only entered into the study after informed consent. 

 Able-bodied EEG data was collected using the 

Neurosearch-24 data acquisition system (Lexicor Medical 

Technologies, Boulder, CO, USA). All silver/silver chloride 
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electrodes were referenced to linked earlobes and impedances 

were kept below 8k. EEG data signals were acquired at a 

sampling rate of 128 Hz and the gain set at 16K to ensure 

waveform resolution was not lost. Low-pass filter was set at 

50Hz to reduce any electrical noise, high pass filter of 1Hz 

was applied to reduced drift noise. The SCI EEG data was 

collected using the Biosemi
TM

 Active-OneSystem. EEG 

signals were recorded following the International 10-20 

Montage system sampled to 256 Hz covering the major areas 

of the brain [6]. Both datasets were collected for different 

studies exploring EO and EC changes for the purpose of the 

MSECS, and hence the different systems. SCI data were 

down-sampled to 128Hz to allow for comparisons. In both 

the able-bodied and SCI group only EEG activity from the 

cortical site O2 was used. An occipital site (O2) was chosen 

for two reasons: (1) alpha activity is usually larger in the 

occipital regions as it is linked with visual perception and (2) 

there are fewer artifacts (eg. ocular muscle activity) in this 

region compared to frontal scalp regions. All participants 

were assessed for their EEG activity in sessions of two 

minutes, which included three consecutive measures of 20s 

EC and 20s of EO. For the able-bodied participants, EC was 

at t=22, 62 and 102 s. In the case of SCI participants, EC 

occurred at t=8, 48 and 88 s. In the case of able-bodied 

participants with 33 participants there were 99 consecutive 

pairs of EO and EC periods, while there were 51 pairs in the 

case of the 17 SCI participants. In our analysis, the first 10s 

of EEG in each of EC and EO periods were used. 

Transformations were applied separately to each known EO 

and EC state. 

B. Assessment of non-stationary behavior and 

transformations to stationary data 

 In this section the transformations required to obtain 

stationary data from non-stationary data and assessing 

stationarity are described. A time series is said to be 

stationary if the distribution of the variable is the same as 

after some lag. Wherever one looks at the distribution for 

some segment of the data at time t it should be the same as 

that observed for a similar length segment at a different time t 

[12]. A time series is said to be weakly stationary if the mean, 

variance or the autocorrelation structure does not change 

with time. The presence of such changes is indicative of non-

stationary behavior. Time series where there is a trend, cycle, 

random walk or combination of the three are examples of 

non-stationary behavior. Such series have a variance and 

mean which varies with time. 

 To obtain stationary data from non-stationary data, two 

main steps are involved: detrending and differencing. 

Detrending will remove the deterministic trend while 

differencing the trend in variance. Detrending is carried out 

by removing the best fit line in the least square sense from the 

data. First order differencing involves forming a series: 

 {y(1),y(2),…y(n-1)} where y(i)=x(i)-x(i-1)  

The series {x(1),x(2),…x(n)} is the detrended series.  

Second order differencing involves forming a series: 

{z(1),z(2),…z(n-2)} where z(i)=y(i)-y(i-1), {y(1),y(2),…y(n-

1)} being the first order differenced and detrended series.  

 Each time differencing is carried out a data point is lost. 

The same process is then repeated to achieve a higher order 

differencing. The amount of differencing is the lowest order 

differencing that yields a time series that fluctuates around a 

well defined mean and variance. The presence of positive 

autocorrelations out to a high number of lags (10 or more) is 

indicative of a need for higher order differencing [13]. 

Differencing tends to introduce negative correlation. It 

reduces the autocorrelations and drives the lag 1 

autocorrelation to a negative value. If the series is over 

differenced the lag 1 autocorrelation tends to have a value 

more negative than -0.5. Another indication of over 

differencing is an increase in the variance rather than a 

reduction when the order of differencing has increased [13]. 

This is a useful result to ensure that the data is not subjected 

to over differencing. A useful corollary is that the amount of 

differencing required to ensure a data is stationary is a 

measure of the correlation present in the detrended data. 

III. RESULTS 

A. Detrending and Diffferencing 

 The procedure of detrending and differencing is 

demonstrated in the representative sample below. Figure 1 

shows a representative EEG record of 10s duration sampled 

at 128Hz during the EO condition. The plot is shown after 

detrending and removing the mean. The bottom plot is the 

autocorrelation function. Figure 2 shows the autocorrelation 

for the four orders of differencing 1, 2, 3 and 4 in the order 

of top to bottom. The first, second, third and fourth 

differencing is denoted as D(1), D(2), D(3) and D(4) 

respectively. From the data, the presence of positive 

autocorrelations out to a high number of lags is indicative of 

non stationary behavior. This is confirmed by evaluating the 

mean and variance of overlapping 2s segments separated by 

0.0781s (10 samples). If the data is stationary the mean and 

variance of these segments should fluctuate around the mean 

and variance of the full record. This is not the case, and 

confirmed with the results shown in Table 1.  

 

 

 

 

 

 

 

 

 

Figure 1.  Top plot is 10s of an EEG record with eyes open after 

detrending and removing mean. The bottom plot is its autocorrelation 

function. 
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Figure 2.  Autocorrelation for different orders of differencing. Lags are 

only shown up to a value of 20, since beyond it the differences are minimal.    

TABLE I.  AVERAGE MEAN AND STANDARD DEVIATION FROM THE 

DIFFERENT SEGMENTS AND THE FULL EO EEG RECORD 

TABLE II.  AVERAGE MEAN AND STANDARD DEVIATION FROM THE 

DIFFERENT SEGMENTS AND THE FULL EC EEG RECORD 

Type of  EEG 

record 

Average (mean 

of all segments) 

  Std 

Average 

(variances of all 

segments) 

 Std 

Mean of 

full record 

Variance of 

full record 

Detrended 

and removed 

mean  

0.584  2.668 541.2  117.6 
0 516.2 

Detrended,  

D(1), and 

removed 

mean   

-0.028  0.131 122.2  26.0 
0 117.2 

Detrended, 

D(2) and 

removed 

mean     

-0.007  0.064 58.8  12.9 
0 56.5 

Detrended,  

D(3) and 

removed 

mean   

0.001  0.040 55.6  12.5 
0 53.2 

Detrended, 

D(4), and 

removed 

mean     

0.016  0.107 202.9  47.8 
0 194.4 

 

 The results for EO indicate that detrending and 

differencing to an order of two are the optimum steps 

necessary to produce a stationary series.  A similar procedure 

as before is then carried out on a 10 seconds EEG data with 

the participant during the EC condition. The results are 

shown in Table 2. The results for EC indicate that detrending 

and differencing to an order of three are the optimum steps 

necessary to produce a stationary time series. This is an order 

higher than that used for differencing compared to the EO 

data set. This indicates the presence of more autocorrelations 

in the EEG of eyes closed data set compared to the eyes 

open data set. 

B. Detrending and Diffferencing results in the able-bodied 

sample 

 The above procedure of detrending and differencing was 

then carried out on a larger set of EO, EC pairs from both 

able-bodied and SCI participants. Figure 3 shows the 

differencing order for EO and EC plotted for different 

consecutive pairs for the able-bodied participants. The results 

show that the differencing order necessary to obtain 

stationary data is not fixed for all EO or EC but varies. The 

mean for EO is 1.3232 while that of EC is 1.8788.  

 However, since it is the change in going from EO to EC in 

each consecutive pair that is of interest in BCI applications, 

the change in the variances in going from EO to EC for each 

consecutive pair after differencing (to obtain stationary data) 

was tested. This was tested using t-test to determine whether 

the null hypothesis can be rejected where it is assumed the 

change in variance from EO to EC is greater than zero.  

  

 

 

 

 

 

 

 

 

Figure 3.  The differencing order for EO (blue*, top plot) and EC (red*, 

bottom plot) for EO, EC pairs in able-bodied participants    

The results from the t- test show that, for the stationary data,  

the null hypothesis can be rejected with a p value less than 

0.0001 with the lower limit of the 99.99% confidence interval 

being 2.5 and the upper limit being infinity. The confidence 

interval is the range which encloses the true hypothesized 

difference at the chosen probability. It is evident that this 

range does not include zero and is always positive.  However 

for the non–stationary data, the p value is 0.84 and the 

confidence interval includes the zero. The null hypothesis is 

therefore  not rejected. 

 

Type of  

EEG 

record 

Average (mean of all 

segments)   Std 

Average (variances 

of all segments) 

 Std 

Mean of 

full 

record 

Variance 

of full 

record 

Detrended 

and 

removed 

mean  

0.314  8.609 428.6  492.7 
0 417.4 

Detrended,  

D(1), and 

removed 

mean   

0.005  0.132 33.3  18.8 
0 30.3 

Detrended, 

D(2) and 

removed 

mean     

0.002  0.031 21.8  7.3 
0 20.9 

Detrended,  

D(3) and 

removed 

mean   

-0.005  0.026 26.4  7.3 
0 26.2 

Detrended, 

D(4), and 

removed 

mean     

0  0.051 83.8  23.8 
0 81.2 
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C. Detrending and Diffferencing results in the SCI sample 

 Results from the analysis of the differencing order 

necessary to obtain stationary data of consecutive EO and 

EC pairs from the SCI data set showed that they do not differ 

from each other, except in three cases where the order for 

EC is 2 and EO is 1. For all other EO, EC data sets the 

differencing order obtained were equal and had a value of 1. 

Thus the autocorrelations presented in EO and EC are similar 

for SCI participants. 

 

 Next, the change in the variance when going from EO to 

EC in each consecutive pair was examined and a t-test 

carried out to determine whether the null hypothesis can be 

rejected. The alternate hypothesis is that the change in 

variance when going from EO to EC is greater than zero. 

The  results from the t-test show that for the stationary data 

that the null hypothesis can be rejected with a p value of 

0.017. The lower limit of the 98% confidence interval is 0.11 

with the upper limit being infinity. Again, as evident from this 

result, the range does not contain zero and has only positive 

values. As for the non-stationary data, the p value is 0.28 and 

the confidence interval includes the zero. The null hypothesis 

is therefore not rejected.  

 

IV. DISCUSSION 

 This paper examined the transformations required to 

obtain stationary data from measured EEG data. The results 

showed that even a 10s segment of EEG data exhibited non-

stationary behavior with the presence of positive 

autocorrelations out to a high number of lags. Often in EEG 

studies, to avoid non-stationarity, shorter time series are used 

in EEG analyses. However, the length of the time series to 

exhibit stationary behavior is not clear. A procedure to 

overcome this ambiguity could be to utilize the 

transformations presented in this paper on the non-stationary 

data to make it stationary.  

  This paper also aimed to test the effect of non-

stationarity when there is a change from EO to EC. Changes 

between the EO and EC conditions have  importance in the 

function of assistive technologies such as the MSECS. The 

study showed that differences between the two conditions 

can be altered depending on whether the data used was 

stationary or not. The results found differences in the 

autocorrelations amongst the EEG time series between EO 

and EC states were significant for able bodied participants 

but not for SCI participants. Analysis of the changes in the 

variances in going from  EO, EC states of able bodied to SCI 

participants for non-stationary and stationary data were also 

studied. The results of able bodied subjects showed that 

statistically significant differences were observed with the 

variance in the EC state greater than in the EO state for the 

stationary data, but not so if non-stationary data was used. A 

similar result was found for the SCI participants. This finding 

is important given that there is known altered brain activity 

seen in persons with SCI [14,15] and this may impede their 

use of BCI based assistive technologies. The transformation 

of non-stationary SCI EEG data to a stationary form vastly 

improves the detection between EO and EC conditions based 

on change in variance. 
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