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Abstract— Pulse transit time (PTT) is strictly related to pulse
wave velocity and may be used for non-invasive monitoring of
arterial stiffness and pressure, whose assessment is fundamental
to detect cardiovascular dysfunctions. We propose a new model
to characterize instantaneous PTT dynamics, and the inter-
actions between PTT and R-R interval (RRI). In this model,
PTT is described as a point process whose probability function
depends on previous PTT and RRI values. From the model
coefficients, instantaneous powers, coherence and directed co-
herence of each spectral component are estimated. We used this
framework to study the changes that tilt table test provoked in
PTT and RRI dynamics in 17 healthy subjects. Time-varying
spectral and coherence analysis revealed that, although PTT
and RRI were locally correlated, direct contribution of RRI on
PTT was low during the entire test in high frequency band, and
just after postural changes in low frequency band. We conclude
that PTT may add valuable information for a more accurate
characterization of cardiovascular regulation.

I. INTRODUCTION

Pulse transit time (PTT) is the time it takes a pulse

wave to travel between two arterial sites [1], and it is

often estimated as the time delay between the R-wave of

the ECG (ventricular contraction) and the arrival time of

the pulse wave to the finger. Pulse transit time is strictly

related to pulse wave velocity [2]. Thus, an appropriate

processing of PTT may offer the possibility of estimating,

non-invasively, arterial blood pressure [2], [3] and arterial

stiffness [4], whose assessment is fundamental to detect

cardiovascular dysfunctions. This possibility is even more

interesting considering that PTT can be estimated by just

using ECG and pulse photoplethysmograph (PPG) devices

[5], which are widely employed, cheap, and comfortable.

In this study, we propose to continuously estimate PTT

by using a point process approach [6]. Being defined as a

waiting time between two events, PTT can be considered

as a point process triggered by the R-wave events, whose

occurrence time is also a point process [6]. Therefore, we

set up a bivariate model between PTT and R-R intervals

(RRI) and we used it to describe the dynamic interactions

between them. We assessed the capability of the model to

capture the statistical dynamics of PTT during tilt table test,
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and we used time-varying parametric analysis to estimate the

instantaneous powers of the signal spectral components, as

well as coherence and directed coherence between them [7].

II. METHODS

A. The R-R interval as a point process

To statistically describe RRI dynamics, let’s first define

the time occurrence of the n-th R wave in the ECG as tR

n
and

the n-th RRI as wRR

n
= tR

n+1
− tR

n
(see Fig. 1). The probability

density function of the duration of the RRI can be described

for any t > tR

n
by a history-dependent (HD) inverse Gaussian

(IG) distribution [6]:

fRR(t) =

√

λRR(t)

2π[t − tR
n
]3

exp

(

−
λRR(t)[t − tR

n
−µRR(t)]

2

2µ 2
RR
(t)[t − tR

n
]

)

(1)

where µRR(t) and λRR(t) are the mean and the shape param-

eters, which completely define the distribution. The recent

history of the RRI series affects the duration of any new RRI

[6]. This dependency is introduced by modeling the mean of

the IG as a linear function of P past wRR

n
:

µRR(t) = a(11)

0
(t)+

P

∑
k=1

a(11)

k
(t)wRR

n-k
(2)

B. Bivariate point process to describe PTT dynamics

Pulse transit time can be seen as a point process, which in

turn depends on a point process: the heart period. The n-th

PTT is defined as wPTT

n
= tP

n
− tR

n
, where tP

n
is the occurrence

time of the n-th pulse in the PPG signal (see Fig. 1). For

tR

n
< t < tP

n
, the PTT is described by a HDIG distribution as:

fPTT(t) =

√

λPTT(t)

2π[t − tR
n
]3

exp

(

−
λPTT(t)[t − tR

n
−µPTT(t)]

2

2µ 2
PTT
(t)[t − tR

n
]

)

(3)

where µPTT(t) and λPTT(t) are the mean and the shape pa-

rameters of the IG. RRI and PTT are modeled as mutually

interacting: past wRR

n
and wPTT

n
both affect µRR(t) and µPTT(t),

the means of the fRR(t) and fPTT(t), respectively:

µRR(t) = a(11)

0
(t)+

P

∑
k=1

a(11)

k
(t)wRR

n-k
+

Q

∑
k=1

a(12)

k
(t)wPTT

n-k
(4)

µPTT(t) = a(22)

0
(t)+

P

∑
k=1

a(21)

k
(t)wRR

n-k
+

Q

∑
k=1

a(22)

k
(t)wPTT

n-k
(5)

These bivariate autoregressive equations are properly updated

corresponding to the point process events tR

n
and tP

n
.

In expressions (4)–(5), a(ij)

k
(t) are the model coefficients

which continuously characterize the dynamic interactions

between RRI and PTT. In particular, a(11)

k
(t) and a(22)

k
(t)
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Fig. 1: An example of ECG (above) and PPG (below) signals.

Circles and crosses mark the occurrence time of a R wave,

tR

n
, and the reference tP

n
in the PPG signal used to estimate

the PTT.

account for the pure autoregressive part of the model, a(12)

k
(t)

quantifies the linear contribution that the (n−k)-th PTT value

has on µRR(t), while a(21)

k
(t) quantifies the linear contribution

that the (n− k)-th RR interval has on µPTT(t).
The standard deviations of the processes [6]:

σRR =
√

µ 3
RR
(t)/λRR(t); σPTT =

√

µ 3
PTT
(t)/λPTT(t) (6)

are used as estimates of RRI and PTT variability, re-

spectively. Time-varying model coefficients are identified

by Newton-Raphson maximization of the local likelihood,

which also includes right censoring, and using a waiting

function W (t − tR

n
) = 0.98(t−tR

n ), with t − tn ≤ 90 s [6].

To assess the capability of the model to describe the sta-

tistical properties of both RRI and PTT series, the model

goodness-of-fit is quantified. Goodness-of-fit is evaluated

by representing the Kolmogorov-Smirnov (KS) plot which

measures the largest distance between the cumulative distri-

bution function of RRI and PTT series transformed to the

interval (0,1] by using the time rescaling theorem [6], and

the cumulative distribution function of a uniform distribu-

tion on (0,1]. The smaller the KS distances, the closer is

the agreement between original RRI and PTT series and

the proposed model. If the model completely captures the

statistical properties of RRI and PTT, the transformed series

should be also uncorrelated [6]. Thus, as further measure

of goodness-of-fit, autocorrelations of the transformed series

are also estimated. To quantify the degree of correlation in

the rescaled series, two indices were estimated: the number

of the lag points for which the correlation was outside the

confidence interval, c#, and the ratio between the highest

correlation and the confidence level, cR.

C. Characterization of the dynamic interactions between

PTT and RRI

1) Time-frequency representations: Once the model coef-

ficients have been estimated, they can be used to characterize

the dynamic interactions between RRI and PTT. Let’s define:

Ak(t) =

[

a(11)

k
(t) a(12)

k
(t)

a(21)

k
(t) a(22)

k
(t)

]

(7)

Coefficients are projected from the time-lag domain to the

frequency domain by Fourier transform:

A(t, f ) =
M

∑
k=1

Ak(t)e
-i2πfk H(t, f ) = [I−A(t, f )]-1 (8)

where H(t, f ) is the non-stationary transfer function of the

system, and M is the order of the model M = max(P,Q).
Spectra, Sij(t, f ), coherence γij(t, f ) and directed coherence

γDC

ij
(t, f ) are defined, for {i, j} ∈ {1,2}, as [7], [8]:

Sij(t, f ) =
2

∑
m=1

Him(t, f )σ 2

m
(t)H*

jm
(t, f ) (9)

γij(t, f ) =
Sij(t, f )

√

Sii(t, f )Sjj(t, f )
(10)

γDC

ij
(t, f ) =

σj(t)Hij(t, f )
√

σ 2
1
(t)|Hi1(t, f )|2 +σ 2

2
(t)|Hi2(t, f )|2

(11)

Coherence |γij(t, f )|= |γji(t, f )| quantifies the strength of the

linear local coupling between RRI and PTT, while |γii(t, f )|=
|γjj(t, f )|= 1. Directed coherence γDC

ij
(t, f ) represents the ratio

between the part of Sii(t, f ) due to process j, and Sii(t, f ) [7].

By definition, |γDC

ii
(t, f )|2 + |γDC

ij
(t, f )|2 = 1. Note also that in

a bivariate model, |γDC

ij
(t, f )| is equal to the magnitude of the

partial directed coherence evaluated along the same direction

j → i [7].

2) Extraction of synchronization indices: To estimate

the time course of the indices, a time-varying spectral

band centered around fij,B(t), the instantaneous frequency

of the LF or HF spectral peak of |Sij(t, f )|, is defined

as: Ωij,B =
{

(t, f ) ∈ [R+ ×B]
∣

∣ f = fij,B(t)±
∆F

2

}

, where B ∈

{LF,HF} and ∆F = 0.1 Hz is the width of Ωij,B. Note that

fij,B(t) is estimated only if a spectral peak is detected in

f ∈ B. Moreover, Ωij,LF and Ωij,HF cannot overlap, and when

respiratory rate decreases, Ωij,HF can include portion of the

traditional LF band, LF∈ [0.04−0.15] Hz.

Instantaneous powers, Pi,B(t), coherence, γij,B(t), and directed

coherence, γDC

ij,B
(t), are estimated as:

Pi,B(t) =
1

∆F

∫

Ωij,B

Sii(t, f )d f (12)

γij,B(t) = max f=Ωij,B
γij(t, f ); γDC

ij,B
(t) = max f=Ωij,B

γDC

ij
(t, f )

(13)

III. MATERIALS

Seventeen volunteers (aged 28.5± 2.8 years, 11 males)

without any previous cardiovascular history underwent a

head up tilt table test according to the following protocol: 4

minutes in early supine position (TES), 5 minutes tilted head

up to an angle of 70 degrees (THT) and 4 minutes back to later

supine position (TLS) [9], [10]. The PPG signal was recorded

from index finger with a sampling frequency of 250 Hz,

whereas standard lead V4 ECG signal was recorded with a

sampling frequency of 1000 Hz. The temporal location of
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each R wave in the ECG, tR

n
, was automatically determined

using the algorithm described in [11] (see Fig. 1). The PPG

signal was interpolated using cubic splines increasing the

resolution in time up to an equivalent sampling rate of

1000 Hz. Each pulse wave in the PPG was detected as

the maximum of the PPG signal within the interval [tR

n
+150

ms, tR

n+1
]. The PTT is estimated as the time going from the

occurrence of a R wave, tR

n
, and the 50% peak value of the

PPG wave, tP

n
[12] (see Fig. 1). Heart beat and pulse wave

detections were manually supervised.

IV. RESULTS

A. The bivariate point process model

To determine the model order, we discretized the order

selection {P,Q} ∈ {2, . . . ,11}, and we estimated the KS

distances and the autocorrelations of the rescaled series

[6]. We empirically found that P = Q = 6 was a good

compromise between spectral resolution and goodness-of-fit.

The temporal resolution, i.e. the sampling rate at which (1)-

(5) were updated, was set at 0.001 s. The mean and the stan-

dard deviation of the HDIG distributions of a representative

subject are shown in Fig. 2(a)-(b). Here postural changes

provoked different and fast variations in µRR(t) and µPTT(t).
Interestingly, the variability of both signals, quantified by

σRR(t) and σPTT(t), changed in a similar way.

The goodness-of-fit was evaluated by means of both KS

plot and autocorrelation of the rescaled RRI and PTT series.

Figure 2(c) shows that the HDIG distributions provided a

good fit: KS plot was inside the confidence interval for

most of the quantiles, being the KS distance 0.043 and

0.057 for RRI and PTT, respectively. Figure 2(d) shows that

the autocorrelation of the RRI rescaled series was always

inside the 95% confidence interval, while that of the PTT

rescaled series was slighly outside confidence interval for lag

1 and 7. For this subject {cPTT

#
,cRR

#
}= {2,0} and {cPTT

R
,cR

R
}=

{1.65,0.66} (see Sec. II-B). As reported in Table I, the

analysis of the entire data-set gave similar results: KS dis-

tance were 0.078±0.016 and 0.046±0.016 for PTT and RRI,

respectively, while {cPTT

#
,cRR

#
} = {2.35 ± 2.02,1.47 ± 1.62}

and {cPTT

R
,cRR

R
}= {1.29±0.34,1.29±0.45}.

B. Interactions between RRI and PTT

The model coefficients were used to explore the dynamic

interactions between RRI and PTT along the entire tilt table

test. Figure 3 shows the median time course of the indices

defined in (12)–(13), estimated across the 17 subjects, while

numerical results are reported in Table I. During head-

up tilt, LF powers increased in both RRI and PTT, while

HF powers decreased in RRI and increased in PTT (Fig.

3(a)–(b)). Coherence in LF decreased at the beginning of

head-up tilt, and slowly increased afterwards (Fig. 3(c)).

Coherence in HF decreased just after postural changes (Fig.

3(d)), and it was generally higher than in LF band. The

time course of directed coherence, shown in Fig. 3(e)-(f),

shows that in LF, RRI gave a substantial contribution on PTT

oscillations, while PTT scarcely affected RRI. Interestingly,

after the postural changes, γDC

21,LF
(t) decreased, suggesting that
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Fig. 2: (a)-(b) Mean and standard deviation of fRR(t) and

fPTT(t) from a representative subject. Vertical lines separate

TES, THT and TLS. (c) KS plot of time rescaled series. (d)

Autocorrelation functions of time rescaled series.

TABLE I: Goodness of fit: results are given as mean ±
standard deviation of KS distances, c# and cR. PTT-RRI

interactions: results are given as median / interquartile range,

estimated across subjects, of temporal median of each index,

estimated in each epoch.

Model goodness-of-fit
Signal KS-dist c# cR

PTT 0.078±0.016 2.353±2.029 1.288±0.339
RRI 0.046±0.016 1.471±1.625 1.289±0.450

Indices of PTT-RRI interactions
Index TES THT TLS

PRR
LF [e-03] 5.22 / 8.58 5.82 / 8.96 6.26 / 8.75

PRR
HF [e-03] 6.63 / 12.2 3.22 / 15.9 5.29 / 11.1

PPTT
LF [e-05] 3.24 / 4.17 8.86 / 13.2 3.57 / 4.18

PPTT
HF [e-05] 5.29 / 4.14 14.1 / 26.1 6.44 / 5.79

γ12,LF [nu] 0.927 / 0.139 0.818 / 0.192 0.878 / 0.196

γ12,HF [nu] 0.972 / 0.037 0.912 / 0.116 0.934 / 0.067

γDC
12,LF [nu] 0.486 / 0.238 0.458 / 0.308 0.403 / 0.236

γDC
12,HF [nu] 0.635 / 0.282 0.684 / 0.343 0.507 / 0.319

γDC
21,LF [nu] 0.789 / 0.165 0.697 / 0.189 0.696 / 0.256

γDC
21,HF [nu] 0.737 / 0.193 0.640 / 0.214 0.694 / 0.259

LF oscillations in PTT were less affected by RRI variability.

In HF, the contribution of RRI variability on PTT was lower

than in LF and it further decreased during head-up tilt.

In THT, γDC

12,HF
(t) > γDC

21,HF
(t), suggesting that orthostatic stress

induced a change in the interactions between PTT and RRI

around respiratory frequency. These changes may be related

to previously documented changes observed during head-

up tilt, suggesting a modification in the phase relationship

between RRI and systolic blood pressure [13], and a different

respiratory influence (in HF) on the pulse rate as compared

to RR respiratory sinus arrhythmia [9].

V. DISCUSSION AND CONCLUSION

In this paper, we propose a model to characterize PTT

dynamics and its interactions with the ECG-derived heart
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period. In the model, PTT is described as a point process

characterized by a HDIG probability function, whose shape

depends on previous PTT and RRI values. The combination

of the point process approach and an autoregressive bivariate

model allows to estimate the signal statistical properties

and their interactions in continuous time [6], [8], respecting

the precise chronological occurrence of each event. The

local likelihood identification provided a satisfactory model

goodness-of-fit. The strength of the coupling, and the con-

tributions of RRI on PTT, were quantified by coherence and

directed coherence, respectively [7].

We used this model to characterize the response of PTT to

a tilt table test. We observed that passive postural changes

provoked fast variations in the PTT. Although coherence

analysis shows that PTT was locally linearly related to RRI,

from directed coherence estimates we observed that PTT did

not just depend on RRI, especially in HF band and in LF

band after postural changes. This implies that PTT may add

valuable information for a more accurate characterization of

the cardiovascular regulation and the dynamic interactions

between cardiovascular signals. The introduction of the PTT

among the cardiovascular variables of interest introduces an

important dimensionality associated to vascular regulation

and its dynamics in the context of the entire cardiovascular

control system.
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