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Abstract— In this work, fuzzy logic based models are used
to describe the relation between systolic blood pressure (SBP)
and tachogram (RR) values as a function of the SBP level.
The applicability of these methods is tested using real data in
Lying (L) and Standing (S) conditions and generated surrogate
data. The results indicate that fuzzy models exhibit a similar
performance in both conditions, and their performance is
significantly higher with real data than with surrogate data.
These results point out the potential of a fuzzy logic approach
to model properly the relation between SBP and RR values. As
a future work, it remains to assess the clinical impact of these
findings and inherent repercussion on the estimation of time
domain baroreflex sensitivity indices.

I. INTRODUCTION

Over the past years, the quantification of arterial-cardiac

baroreflex sensitivity (BRS) has been useful in the study

of many pathological states, where lower BRS have been

associated with increased cardiovascular disease-related mor-

tality [9]. Time domain methods for BRS estimation typically

assume linearity between SBP and RR values in baroreflex

sequences [5], in baroreflex events [6] or in 10 sec windows

[14]. A BRS estimate is then obtained as the mean of the

slopes obtained for each segment [5], [14] or as one single

global slope after local mean detrend of the data [6].

Erroneous conclusions can be drawn if a SBP and RR

global linear relation is considered because it is known that

these series exhibit very low correlation [11], [12]. Previous

work proposed local mean detrend to address this problem

when computing a global slope [6]. This transformation

allows to put together the SBP and RR pairs identified in

baroreflex related segments obtained at different operating

points, i.e., different SBP and RR levels. The underlying

hypothesis of local mean detrend is that the BRS slopes

obtained along a stationary recording are of similar value,

which is not too restrictive because, under stationarity con-

ditions, small operating points changes are expected. Never-

theless, these time domain BRS methods provide one single

slope estimate which establishes a proportionality between
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SBP and RR values, regardless of the SBP value. It is in this

context, that fuzzy logic methods can be used to establish a

function dependent of the SBP values, not restricted to be

linear or of any type. Typically, fuzzy logic methods can

be used to describe the unknown inputs-output relationship,

combining both empirical rules (that were driven by the

problem) and information extracted from the experimental

data itself [4]. These methods are easy to interpret since the

model output can be written as a weighted linear combination

of the system inputs, and constitute a generic framework for

uncertainty handling.

The purpose of this paper is to evaluate the application

of fuzzy logic methods to describe the relation between

spontaneous SBP and RR values with potential repercussions

on time domain BRS estimation. The methods are evaluated

with real data from the EuroBaVar dataset [10], acquired in

Lying and Standing conditions, and tested with generated

surrogate data. The rationale of using surrogate data in this

work is to generate an ensemble of artificial time series that

mimic the original data and are simultaneously consistent

with the null hypothesis of no relation between SBP and RR

series. Afterwards, fuzzy logic models are applied to both

original and surrogate data. If the fuzzy surfaces for real

data exhibit significant differences from those of surrogates,

then one may reject the underlying null hypothesis and

conclude that the fuzzy logic model explains a significant

amount of data variance. Contrarily, if there are no significant

differences between the fuzzy surfaces estimated from real

and from surrogate data then one may not reject the null

hypothesis.

II. FUZZY LOGIC MODEL ESTIMATION

The fuzzy logic model was designed as RR=f (SBP),

which can be seen as single input single output system.

The fuzzy description is based on If Then rules. Basi-

cally, the system input is mapped into membership functions

that associate an input value to a membership degree. This

value is then used to obtain the rule weight and the rule

output is used to generate one consequent (the Then).

Finally, the output of the system is obtained by aggregating

all consequents. In this work, the fuzzy logic system was

defined as a Sugeno model, which considers the system

output as a function z = f(x1, x2, ..., xn) [1]. Given the

inputs xj , j = 1, 2, ..., n, a typical rule i = 1, 2, ..., N with

output zi can be defined as

If xj ∈ F i
j (xj), then zi =

n∑

j=1

aijxj + ci, (1)
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where F i
j (xj) are fuzzy sets and aij and ci are constants [7].

Each rule output zi is then weighted by its firing strength

wi =
n∏

j=1

ΓF i
j
(xj) (2)

where ΓF i
j

is a Gaussian membership function defined by

its center µi and standard deviation σi [2]. The final output

of the system ẑ is the weighted average of all zi, computed as

ẑ =

∑N

i=1 wizi∑N

i=1 wi

. (3)

The optimal number of rules N and the parameters a,

c, µ and σ for each rule i = 1, 2, ..., N were estimated

by Adaptive Network Fuzzy Inference System (ANFIS).

This method combines backpropagation and least squares

minimization and it is generically called an hybrid method

[7]. The initial values for µ and σ were obtained using

subtractive clustering, which divides the antecedent domain

in clusters. The radius σ was defined a priori as a value

between 0 and 1, where 1 corresponds to the data range [2].

Figure 1 presents an illustrative application of the fuzzy

logic method to the estimation of a real set of SBP and RR

values. Figure 1(a) presents the real data superimposing the

generated system output, i.e. the fuzzy surface describing the

RR as a function of SBP values. This surface was obtained

from the membership functions represented in Fig. 1(b),

which map the SBP space and associate to each SBP value a

membership degree (amplitude of the membership function).

The activated rules are then weighted to generate the system

output following Eq. 3.

The model performace was evaluated from

δ =
1

m

m∑

i=1

|z(i)− ẑ(i)|

|z(i)|
∗ 100 , (4)

where ẑ(i) is the estimate of z(i) and m represents the

recording length.

III. EXPERIMENTAL DATA

In this work, the methods are illustrated with real data

from the EuroBaVar dataset [10]. Additionally, the methods

are tested with isodistribution surrogate data generated from

the EuroBavar dataset, following general guidelines [13].

A. Real data: EuroBaVar dataset

The EuroBaVar dataset was acquired from 21 subjects

in Lying (L) and Standing (S) positions [10]. It contains

46 paired records of spontaneous ECG and arterial blood

pressure (ABP) recordings of approximately 10 minutes

length and acquired at 500 Hz of sampling frequency. The

experimental protocol was designed to ensure stationary

conditions, minimizing the disturbance and the noise in the

room. Each subject was first recorded in S condition and the

recording started after 5 min standing. After followed the

L condition and the recording started after 5 min lying. In

between conditions, there was a 10 min rest period, when

the ABP finger cuff was removed and patients could speak.
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Fig. 1. Dispersion diagram of the first 512 SBP and RR values of the
EuroBaVar datafile A001LB, superimposing the estimated fuzzy surface z
(a). Membership degree Γ

F
i
j

(j = 1 and i = 1, 2, ..., 6) associated to

each membership function, according to the SBP input values (b).

The inclusion of 21 heterogenous subjects in this dataset

meant to reproduce a wide range of SBP and RR pairs of

series, likely to appear in practice. The dataset includes one

diabetic subject with evident cardiac autonomic neuropathy

and another recently heart transplanted, both classified as

cardiac baroreflex failure patients by the Ewing score. In

a previous study, these two subjects were identified as

presenting the lowest BRS estimates of the dataset [6]. The

remaining 19 subjects are 12 normotensive outpatients, 1

untreated hypertensive, 2 treated hypertensive and 4 healthy

volunteers. For the interest of this work, three of the 21

subjects were referred as being under the effect of statin

medication, which is a form of therapy often used to lower

the cholesterol, by blocking the liver from using a substance

it needs to produce cholesterol [3].

The lengths of the EuroBaVar SBP and RR series range

from 553 to 1218 beats and, to set comparable results, the

methods were applied to the first 512 beats of each recording.

In accordance with previous studies, the SBP and the RR

series were considered with one beat delay, i.e. each SBP

value matching with the following RR value [6].

B. Simulated data: Isodistribution surrogate dataset

One isodistribution surrogate file was generated for each

EuroBaVar file, following the general guidelines given in

[13]. The SBP series was maintained as the original, in order

to ensure the same SBP range of values in the real and

the corresponding surrogate series. The artificial RR series
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was generated as to reproduce some statistical properties

of the original. In particular, isodistribution surrogate RR

series were considered, which have the same empirical prob-

ability distribution as the real ones, by resampling without

replacement the original data. This procedure is equivalent

to scramble the original RR values to produce a surrogate

series with a random order. As a consequence, the surrogate

RR series have the same mean and the same variance as

the corresponding real series, but the temporal dependency

between consecutive RR values is destroyed and, therefore,

isodistribution surrogate RR series present a white noise

power spectra. The shuffling in the RR series additionally

destroys the relation between SBP and RR amplitudes. For

illustration purposes, Fig. 2 presents an example of the real

and the corresponding surrogate series.
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Fig. 2. Dispersion diagram between SBP and RR values of the EuroBaVar
datafile A001LB (a) and dispersion diagram between the SBP values and
corresponding RR isodistribution surrogate series (b).

IV. RESULTS AND DISCUSSION

Figure 3(a) presents the two-dimensional curves repre-

senting the fuzzy mapping from SBP to RR values, for

each EuroBaVar datafile. As evidenced by the overlapping of

different colors, the fuzzy surfaces for L and for S conditions

are difficult to distinguish. This, together with the different

SBP ranges for different files, well illustrates the heterogene-

ity of subjects included in the EuroBaVar dataset. Figure

3(b) shows the fuzzy surfaces estimated for each surrogate

datafile. From the comparison with Fig. 3(a), it becomes

clear that the fuzzy surfaces estimated from the surrogate

data are almost of constant amplitude, indicating that these

fuzzy functions are typically modelling the corresponding

mean RR values.

The inter-subject comparison was carried out from the

pairwise L to S ratio of the estimated curves. The analysis

of these ratio functions allows to diminish the intra-subject

variability, as different conditions are compared within the

same subject and, consequently, the ratio analysis enhances

the comparison between fuzzy surfaces obtained from a het-

erogeneous dataset. For the ratio computation, the estimated

fuzzy curves had to be evaluated in the same SBP scale

and, in this work, this problem was addressed with linear

interpolation assuming a SBP scale ranging from 60 to 200

mmHg in steps of 0.5 mmHg. Figure 4(a) shows the L to

S ratio of the fuzzy surfaces obtained for the EuroBaVar
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Fig. 3. Plot of the fuzzy surfaces obtained for each EuroBaVar file (a)
and for each isodistribution surrogate file (b), distinguishing the recordings
acquired in Lying (black) and Standing (red) conditions.

datafiles. Most of the subjects exhibit curves with L to S

ratio above 1, in accordance with the fact that RR values are

typically higher in L than in S condition [10]. The exception

is B001 subject, for which the RR values in L condition were

lower than those in S condition for all SBP values.

Figure 4(a) also discloses a linear pattern between the

ratio fuzzy surfaces and SBP values, as SBP level increases

the ratio fuzzy surfaces provide values more close to 1,

indicating that the RR estimates for L and S condition are

more similar with increasing SBP values. However, five

subjects with SBP range from 90 to 130 mmHg and L to

S ratio around one seem to exhibit a different pattern from

the remaining. Three of these five subjects were reported as

taking statin medication, which might explain these results.

Statins lower blood cholesterol by blocking the body’s ability

to absorb a substance needed to produce cholesterol and this

medication was recently reported to lower blood pressure

by cholesterol independent mechanisms, being the reduction

larger in individuals with higher blood pressure [3]. Indeed,

the ratio surfaces for these subjects exhibit RR estimated

values comparable to those of the subjects with SBP between

140 and 180 mmHg. Figure 4(b) presents the ratio fuzzy

surfaces estimated for the surrogate datafiles. It is possible
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Fig. 4. Plot of the ratio between the fuzzy surfaces estimated for L and S
condition (L/S ratio). The ratio curves are obtained for each EuroBaVar file
(a) and for each isodistribution surrogate file (b), after linear interpolation
in the SBP scale from 60 to 200 mmHg in steps of 0.5 mmHg.

to observe the same decreasing tendency in RR mean values

as SBP level increases, what is explained by the fact that

surrogate data were produced from SBP and RR series with

the same mean and variance of the real dataset. The flatter

amplitudes of the ratio fuzzy surfaces for the surrogate data

highlights that these fuzzy surfaces are typically modelling

the corresponding mean RR interval.

Figure 5 presents the pairwise difference between the er-

rors evaluated for real and surrogate data, showing that lower

modeling errors are obtained for the real datafiles. Noticing

that these differences are negative for all real/surrogate pairs

of files and, consequently, any statistical test would provide

the conclusion that the mean/median errors in fuzzy models

estimated from real data are significantly lower than those

evaluated from surrogate data. Furthermore, there were no

significant differences in the errors medians, when comparing

different conditions (Mann-Whitney U test, p = 0.59).

V. CONCLUSIONS

This study evidences that fuzzy logic methods may better

describe SBP and RR relation and, therefore, have the po-

tential to improve time domain BRS estimation. The results

indicate that fuzzy models estimated from real data exhibit
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Fig. 5. Boxplot of the pairwise differences between δ evaluated for real and
corresponding surrogate data (Eq. (4)), distinguishing L and S conditions.
Limits of the box represent quartiles values and notches represent a robust
95% confidence interval for medians for box-to-box comparison.

significantly lower mean/median modeling errors than those

estimated from surrogate data. This is because real fuzzy

surfaces are much less flatter than surrogate ones, indicating

that fuzzy methods may be able to model RR changes

connected to SBP alterations, besides the mean value.

Future work will include the quantification of the amount

of variance explained by the model. Additionally, the fuzzy

model parameters will be evaluated in the ability to identify

patient clusters that may help in the identification of patho-

logical characteristics and improve clinical diagnosis.
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