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Abstract— Current and near-term implantable prosthetic
vision systems offer the potential to restore some visual function,
but suffer from poor resolution and dynamic range of induced
phosphenes. This can make it difficult for users of prosthetic
vision systems to identify symbolic information (such as signs)
except in controlled conditions. Using image segmentation
techniques from computer vision, we show it is possible to
improve the clarity of such symbolic information for users of
prosthetic vision implants in uncontrolled conditions. We use
image segmentation to automatically divide a natural image into
regions, and using a fixation point controlled by the user, select
a region to phosphenize. This technique improves the apparent
contrast and clarity of symbolic information over traditional
phosphenization approaches.

I. INTRODUCTION

Low/impaired vision is common with prevalence rates
ranging from 2.7% to 5.8% [5], [6], [7]; it is projected that
in Australia these numbers will increase with the number of
people with vision loss aged 40 or over rising from 575,000
to almost 801,000 by 2020 [5]. In terms of the individual,
low vision is associated with impaired physical and social
functioning, and reduced quality of life; in particular, mobil-
ity is often impaired. Targeting mobility and its components
such as the ability to safely navigate through an environment,
is one aspect of visual functioning that may lend itself
to effective intervention strategies including vision-related
assistive devices and the retinal implant [8].

A human with normal, or even lower than normal visual
acuity, can use symbolic visual cues to navigate their en-
vironment. For example, signs showing the street address
of a building allow a sighted individual to find their way
around a city. Losing this ability severely restricts a person’s
ability to navigate and understand their surroundings. The
ability to read signs, hence, would be a desirable feature for
a visual prosthetic device [8], [14]. Unfortunately existing
and planned visual prosthetic systems do not provide enough
visual acuity to be able to identify symbols such as digits
and icons readily at a distance. Higher-acuity devices can
allow reading of text in controlled conditions [13] but in a
navigation context, the symbols could be far away and appear
in unpredictable lighting conditions.

In this paper we present an image processing system which
could potentially alleviate some of these issues. The system
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Fig. 1: (a) The original image; (b) original image phosph-
enized with no processing; (c) output of the first stage of
segmentation; (d) result of our post-processing and fixation
point region selection; (e) phosphenization of (d).

is illustrated in Fig. 1. An image segmentation algorithm
was used to automatically divide an image (a) into a set of
regions (c) by appearance. We expect that taking one of these
regions (d), scaling it appropriately, and displaying it using a
simulated phosphene vision package (e) results in faster and
more accurate symbol recognition than simply phosphenizing
the entire image using a naive approach (b).

We present results showing how such segmentation might
be used to improve visualisation of symbolic information.
Simluated prosthetic vision images using the results of the
segmentation process show symbolic and text signs in indoor
and outdoor conditions show the improvement in visibility
that results from this processing.

II. METHODOLOGY

A. Overview

The system requires two inputs: an image, which may be
from a camera mounted to glasses worn by the user; and a
fixation point, a coordinate pair on the image which may be
controlled by the user or fixed. The input image is first fed
into the image segmentation algorithm, which divides it into
a set of regions. The region which contains the fixation point
is then separated and converted to a binary image (where the
region is white, and the remainder of the image is black). The
binary image is then rescaled to suit the target phosphene
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map. For demonstration, this is then fed into a phosphene
vision simulator.

B. Image Segmentation

We use the method described in [1] to produce segmen-
tations of images. A graph is generated (illustrated in Fig.
2), with one node for each pixel in the original image, and
edges between adjacent pixels, with edge weights calculated
as a function of pixel values. In this case, edge weights
are calculated by first smoothing the image with a Gaus-
sian convolution filter, then finding the Euclidean distance
between adjacent pixel values in RGB space. This results
in high weight being given to edges connecting pixels with
very different color values. The image is cut into regions
along boundaries with high edge weights. We added a post-
processing stage to join adjacent regions of similar color
together, since our desired result is a single region covering
the entirety of the symbol.

The system was run with σ = 0.1, k = 500, Rmin = 20,
where σ is the scale of the smoothing filter, k is the threshold
used for cutting the graph, and Rmin is the minimum region
size (regions smaller than this are merged with an adjacent
region). The post-processing stage joined adjacent regions
with colour difference of less than

√
5000 measured as

Cartesian distance in RGB space. All these values were found
empirically to be effective for the range of input images used.

The segmentation method produces a set of regions which
group similar image pixels together. For most natural images,
tens or hundreds of regions could be found in one image,
most of which are irrelevant to a user of our system. To deal
with this, we take only the region which contains the user’s

Fig. 2: A simplified example of graph-based image segmenta-
tion. A graph is formed where each node (circle) corresponds
to an image pixel, and edges connect adjacent nodes. Edges
are weighted by the color difference between the nodes they
connect - edges with high weight are depicted as dashed
lines. By removing edges along a closed path, the graph is
split into multiple regions. The path is selected such that the
resulting regions have a lower total edge weight - removing
edges with high weight.

“fixation point” - which could be anywhere in the image
(for example, following the user’s eye gaze direction). We
then use only the shape of this region to determine which
phosphenes should be activated.

The fixation point is supplied to the segmentation al-
gorithm as a parameter. Moving the fixation point can
select different regions for display, and thus a user can use
the fixation point to “scan” across the scene and perceive
symbols with spatial context. This allows for reading simple
text or groups of adjacent symbols.

Processing time varies slightly with the particular image
used. All test images used were RGB, 8 bits per channel,
640 × 480 pixels. Processing for each completed within
190ms on an Intel Core2 Quad running at 2.66GHz, which
corresponds to a frame rate of over 5 frames per second.
Further optimisation could improve this significantly.

C. Simulated phosphene rendering

The simulated phosphene vision system described in [2]
was used. Phosphenes were built as discrete Gaussian kernels
using impulse sampling of the segmented region at the
phosphene location, without prior filtering. Other common
methods for rendering phosphenes are to filter the image
prior to sampling [10] or after [11], or apply a mean
or Gaussian filter over an area centered at the phosphene
location [9].

Phosphene rendering was applied to both the original
intensity image (for comparison) and the segmented region.
Our simulated phosphene display consisted of a 35 × 30
rectangular grid scaled to image size. Each phosphene had
a circular Gaussian profile whose center value and standard
deviation is modulated by brightness at that point [12]. In
addition, phosphenes sum their values when they overlap.
Phosphene rendering was performed at 8 bits of dynamic
range per phosphene, which is an idealised representation.
There is evidence that at least 10 distinct levels of brightness
can be reliably percieved by an implant recipient [15].

III. RESULTS

A number of example images were tested with the system
and show promising results. While formal studies have not
yet been performed on the utility of the system, it is clear
that the original symbols can be easily recognized from
the resulting phosphenizations. Significantly, the examples
shown here are from a range of real-world situations, with
varying lighting conditions, size of object, and contrast
present in images.

An example of a typical situation where segmentation is
useful is in Fig. 3. A person with impaired vision might not
see the sign in (a) at all. Even with a high-acuity retinal
implant, they are likely to perceive something similar to
that shown in (b), which still does not clearly convey the
information in the sign, or even that a sign is present. How-
ever by applying the segmentation approach described, the
phosphenizations in (c) and (d) can be generated by scanning
the fixation point around the image. These phosphenizations
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Fig. 3: (a) The original image; (b) original image phosph-
enized with no processing; (c) and (d) phosphenization of
segmentation, with two different fixation points within the
sign area.

emphasize the important information in the sign and make
it readily recognizable.

Fig. 4 shows that reading simple incidental text is possible
with this system. While moving the fixation point from left
to right in this image, the phosphenization (c) is shown
when the fixation point is over the label background, and
the phosphenizations in (d), (e) and (f) are shown when the
fixation point passes over the digits. The poor quality of
the phosphenization in (f) is due to an image resizing error,
despite this, given context, the digit depicted is recognizable.

The system also allows users to discriminate between a
number of different but similar symbols. Fig. 5 shows results
for some common symbols. Note that in two of the three
cases, the symbol is similar in shape and has poor contrast
with the background, but it is relatively easy to distinguish
between all three in the phosphenizations of segmentations in

(a) (b)

(c) (d) (e) (f)

Fig. 4: (a) Original image; (b) showing fixation points used
(centre of each red X); (c), (d), (e) and (f) phosphenization
of segmentations using fixation points, from left to right.

(a)

(b)

(c)

Fig. 5: (a) Original images; (b) phosphenization without
processing; (c) phosphenization of segmentation.

(c). Note also that only connected components of the fixated
region are shown - i.e. the heads are not shown on the male
and female symbols. In these cases moving the fixation point
will allow a user to view disjoint components separately, as
demonstrated in Fig. 4.

The binarization aspect of the system allows it to compen-
sate for low dynamic range in foreseeable retinal implants.
Fig. 6 shows results for a sign with poor contrast. Even
after zooming the image as in (b), the symbol is not clearly
represented. The segmentation approach, however, shows the
symbol clearly with high contrast.

(a) (b)

(c) (d)

Fig. 6: (a) Original image; (b) zoomed version of original
image; (c) phosphenization of segmentation; (d) phosph-
enization of zoomed image.
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IV. CONCLUSION AND FUTURE WORK
We have shown that image segmentation applied using

our method is feasible and useful for a real-world prosthetic
vision system, and shows promising results for symbol
recognition. However, there is much exploration still to do
in this space. Human trials of the system, similar to those
described in [2] would be useful to confirm the usefulness
of this approach. More importantly, the technique has only
been tested on static images as shown here, so our next
step will be to test the system with real-time video input.
The segmentation algorithm should be improved with this in
mind, and aim to ensure the segmentations are stable enough
to be useful in this context. The system also requires further
optimisation to run in real-time with an acceptable frame
rate. Further development of segmentation algorithms should
continue with the real-time requirements of the overall sys-
tem in mind.
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