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Abstract— The perception of independently moving objects
in the scene is an important capability for prosthetic vision,
but is impeded by the limited resolution and dynamic range of
current and near-term retinal prostheses. We propose a novel,
biologically-inspired visual representation for prosthetic vision
based on the recovery of time-to-contact (τ ) with surfaces in
the scene. The representation directly encodes the extent of
motion towards the observer, placing greatest emphasis on
objects posing an imminent threat of collision. Our results
suggest the proposed τ -based representation may facilitate
earlier perception of incoming objects, and provide clearer
distinction between moving objects and the static structure
of the scene compared with intensity and depth-based scene
representations.

I. INTRODUCTION

The last decade has seen significant progress in the devel-
opment of retinal visual prostheses. In most cases, scene im-
agery is obtained via high resolution digital images captured
from one or more head mounted cameras [1], [2]. Vision
processing is then employed to translate the image data to
some condensed encoding of the scene, suitable for transfer
via eletrical stimulation of retinal ganglion cells, and onto the
visual cortex. The result is a so called phosphene image [3]:
an array of phospherous light spots, each loosely correspond-
ing to one stimulating electrode (though interactions between
electrodes almost certainly occur). The brightness and size of
each phosphene varies with the amount of current delivered,
allowing images of the scene to be rendered.

Enabling safe mobility in dynamic environments is a chal-
lenging and important problem for prosthetic vision. Current
and near-term retinal prostheses are severely limited in both
resolution and dynamic range. This has motivated researchers
to consider efficient visual representations of the scene that
convey as much of the scene structure as possible, and
maximise functional outcomes for implantees. In the context
of mobility, prosthetic and simulated prosthetic vision (SPV,
see [4], [5] for a review)) studies have considered basic navi-
gation tasks using intensity-based scene representations (i.e.,
phosphene brightness conveys scene luminance), typically in
high contrast environments [6], [7], [8], [9], [10], [11]. More
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recently, investigations using a depth-based representation
of the scene (i.e., phosphene brightness conveys surface
proximity) [12] have also been conducted, showing potential
advantages in the presence of obstacles. These studies have
primarily focussed on mobility in static environments.

Most real-world environments (e.g., urban and office en-
vironments) are dynamic. To achieve safe and efficient mo-
bility in such environments, prosthetic vision must facilitate
fast and accurate perception of imminent collisions, while
also conveying the static scene structure. While depth-based
representations offer potential advantages for achieving the
latter (compared with intensity-based), the perception of
relative motion between observer and objects in the scene
remains difficult due to a lack of visual scene features from
which to infer motion. Temporal changes of depth provide an
obvious cue for motion, but require sufficient dynamic range
to observe the change in time to take appropriate action. The
cognitive demands associated with perceiving depth changes
induced by multiple free moving objects are also likely to
impede functional outcomes.

An alternative visual representation is to encode the
proximity of surfaces with respect to their time-to-contact.
That is, the ratio of an object’s relative velocity towards
the observer, and its distance from the observer. The key
difference is that ‘depth’ becomes a temporal measure rather
than a spatial one. Thus, an approaching object is considered
to be closer than another at the same absolute distance from
the observer if its velocity towards the observer is greater.

There is strong evidence of the use of time-to-contact for
motor control across a wide range of animal species [13],
[14], [15]. In most cases this is attributed to looming sensitive
neural mechanisms that measure the apparent expansion of
intensity patterns on the retina. Such visuo-motor schemes
have also been successfully applied in robotic systems (e.g.,
[16], [17], [18]).

The use of time-to-contact offers several advantages for
prosthetic vision:

1) it provides a direct and immediate encoding of poten-
tial contact with surfaces in the scene;

2) it relates surface proximity to observer motion (rather
than gaze direction), and thus places greatest emphasis
on objects posing a direct threat of collision with
respect to this motion;

3) it has a biological basis, providing a cue known to
be utilised for numerous animal visuo-motor control
tasks [19].

In this paper we introduce time-to-contact as an important
visual cue for mobility with prosthetic vision. We propose a
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novel visual representation for prosthetic vision to facilitate
safe mobility in dynamic environments. We present quanti-
tative and qualitative results demonstrating the effectiveness
of the proposed time-to-contact representation (τ -based) for
emphasising free-moving incoming objects, using simulated
prosthetic vision.

II. TIME-TO-CONTACT

Time-to-contact is defined as the ratio of the surface
distance and its component of velocity toward the observer
such that for a viewing direction p̂ ∈ R3:

τ(p̂) =
R(p̂)
(p̂ � ~t)

, (1)

where R(p̂) is the radial depth of the surface along p̂, and
~t ∈ R3 is the translational motion of the surface with respect
to the observer.

There are numerous ways to compute time-to-contact.
Most commonly it is computed from the divergence of
the optical flow field [16], [17], [18]. This, however, is
complicated by the confounding of surface gradient and
translational motion in the deformation component of the
measured divergence [16], [20]. Thus, in general, only a
bound on time-to-contact can be computed from optical flow.
However, given a dense depth image of the scene (e.g., stereo
disparity from binocular images, kinect, etc.), time-to-contact
may be computed precisely from temporal changes of depth.

Let Zt(x, y) and Zt−1(x, y) ∈ R be dense depth images,
providing for each image point the depth of the point
projecting to that location (we assume a pinhole camera
model). Let It(x, y) and It−1(x, y) be the corresponding
intensity images for each depth image, assumed to be aligned
with each depth image. Let Ft(x, y) ∈ R2 be the set of point
correspondences (expressed as a 2-vector) for all points in It
such that each point is mapped to its origin in the previous
frame. In our results, we compute these correspondences
using a pyramidal implementation of Lucas and Kanade’s
gradient-based technique as described by Bouguet [21] and
provided in the OpenCV developers library1

From Ft, we compute the relative velocity, ∆t, between
observer and the scene along each viewing direction (i.e.,
p̂ � ~t) such that:

∆t(x, y) = Zt−1(F (x, y))− Zt(x, y), (2)

thereby giving the component of velocity parallel to the
optical axis of the camera. To minimise the effects of
noisy depth estimates and erroneous point correspondences,
median filtering is applied to the resulting ∆t image.

Assuming that the observer’s translational motion is ap-
proximately aligned with the optical axis2, the final time-to-
contact map, τt(x, y) ∈ R, is then computed as:

τt(x, y) =
Zt(x, y)

∆t(x, y) cos(θp)
, (3)

1http://opencv.willowgarage.com.
2note that robust and efficient methods for computing camera egomotion

exist, and may also be applied if required.
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Sequence 1 (stationary camera): Dt vs Vt (lambda = 125)
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Sequence 2 (moving camera): Dt vs Vt (lambda = 125)
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Fig. 1. Results comparing output response from Dt (i.e., depth-based) and
Vt (τ -based) from both sequences. Figure plots output signals (from which
phosphene brightness is determined) using mean response from static and
moving object measurement windows (see Figure 2 for their locations).

where θp is the viewing angle of the image point (x, y) with
respect to the image origin (computed from known intrinsic
camera parameters).

A. A τ -based representation for prosthetic vision

We now describe our proposed use of time-to-contact as a
novel τ -based representation for navigation and mobility in
dynamic environments. Time-to-contact is inherently defined
with respect to motion in the scene, and thus provides
no structural information under motionless conditions. We
therefore propose a unified visual representation to handle
all conditions, placing τ−1

t in linear combination with the
current disaprity image, Dt ∈ R of the scene such that:

Vt(x, y) = max
(
vmin,min

(
Dt(x, y) +

λ

τt(x, y)
, vmax

))
,

(4)
where λ is a scale factor determining the extent of influence
of τt on the representation (λ = 125 in all results presented),
and vmin and vmax are lower and upper bounds in the
resulting response. Note that the recipricol, τ−1, ensures
faster approaching objects induce a larger and exponentially
increasing response as an object approaches. This is akin
to visual looming, from which time-to-contact is typically
inferred. Conversly, the entire term vanishes when no motion
is present (i.e., τ = ∞), thereby defaulting to a standard
depth-based scene representation.
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III. RESULTS

Two image sequences were constructed using a kinect
sensor to validate and compare the τ -based representation.
Sequence 1 shows a corridor scene containing an overhang-
ing and motionless black box, and a person walking from
the back of the corridor (and behind the box), towards the
sensor. Sequence 2 depicts the sensor moving along an office
corridor at approximately constant velocity while a person
enters the corridor and walks past. Sample frames from both
sequences are given in the left-most column of Figure 23.

A. Assessment of output response

Figure 1 shows plots of the output response of, Dt,
and the τ -based representation, Vt, over the course of both
sequences. Measurements for both were taken as the average
response from two 50×50 measurement windows, positioned
on a: 1. static-object, and 2. moving-object region in the
scene. (measurement regions for both sequences are shown
in Figure 2). Measurement locations remained constant
throughout each sequence.

Figure 1(a) shows both Dt and Vt remain constant and
the same within the static-object window. However, a clear
distinction is apparent in output responses from the moving-
object window, with a clear increase in response resulting
from the measured time-to-contact of the moving object. At
the point where the walker and box are equidistant from the
camera (frame 70), the output response from Vt is 1.41 times
greater than Dt in the moving-object region.

Figure 1(b) shows plots obtained for Sequence 2. In
this case the camera is in motion, and thus a non-zero τ
contribution is apparent across the scene. However, a clear
and stable increase in response is observed from the moving-
object measurement window, indicating that Vt is correctly
emphasising the approaching walker. Plots from the static-
object window (positioned on the corridor floor) indicate
reasonable constancy of the response.

Figure 2 visualises these results, showing from left-to-
right: the original image, the disparity image, Dt, the re-
cipricol time-to-contact image, τ−1

t , and the proposed rep-
resentation, Vt. . The approaching walker in both sequences
appears brighter in Vt images (right-most column) compared
with Dt (second column). τ−1 images (column 3) confirm
it is only approaching surfaces being emphasised in Vt.

B. Simulated prosthetic image comparison

Figure 3 shows example phosphene images from both se-
quences, comparing visualisations obtained using: intensity-
based, depth-based and the proposed τ -based representation.
The phosphene images are rendered using the system de-
scribed in [12], with 98 phosphenes and 8 (3-bit) brightness
levels4. In both cases, the τ -based representation appears to
provide the clearest visualisation of the approaching walker

3Videos showing full image sequence are available at http://cecs.
anu.edu.au/˜cdmcc/taumaps

4There are 98 electrodes on Bionic Vision Australia’s wide view implant.
Around 8 levels of brightness is approximately consistent with current
results from human trials of retinal prosthetic vision.

while still providing the static structural cues apparent in the
depth-based representation.

IV. CONCLUSION

Safe mobility in dynamic environments is an important
capability for prosthetic vision. We have proposed a novel,
biologically-inspired visual scene representation that encodes
the time-to-contact of surfaces in the scene, emphasising
those objects posing an imminent threat of collision. Results
demonstrate how the proposed τ -based representation may
be used to provide earlier perception of incoming objects (via
increased phosphene brightness) than depth alone. Visual
comparisons with intenstity- and depth-based representations
in simulated prosthetic vision suggest potential advantages
for navigation with current and near-term visual prostheses.
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Sequence 2 − moving camera

Fig. 2. From left to right: (a) original images (boxes show static- and moving-object measurement windows); (b) Dt (depth-based); (c) τ−1 (i.e.,
time-to-contact response) ; and (d) Vt (τ -based, λ = 125). Note different locations of poster in Seq. 2 confirming camera motion. Best viewed on screen.
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Fig. 3. Qualitative comparison of visual scene representations using simulated prosthetic vision (98 phosphenes, 8 brightness levels) showing from left
to right: (a) the original image, (b) intensity-based, (c) depth-based and (d) τ -based representations.
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