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Abstract — A couple of studies have been conducted with
able-bodied subjects and/or arm amputees to investigate the
impact of arm position changes in the practical use of a
multifunctional myoelectric prosthesis. The classification
accuracy calculated offline from electromyography (EMG)
recordings was used as a performance metric in these studies,
which is not a true measure of real-time control performance. In
this study, the influence of arm position changes on the real-time
performance of EMG pattern recognition (EMG-PR) control
was quantitatively evaluated with four real-time metrics
including motion response time, motion completion time,
motion completion rate, and dynamic efficiency. Ten
able-bodied subjects participated in the study and a cascade
classifier built with both EMG and mechanomyogram (MMG)
recordings was proposed to reduce the impact of arm position
variation. The pilot results showed that arm position changes
would substantially affect the real-time performance of EMG
pattern-recognition based prosthesis control. Using a cascade
classifier could significantly increase the average real-time
completion rate (p-value<0.01). This suggests that the proposed
cascade classifier may have potential to reduce the influence of
arm position variation on the real-time control performance of a
prosthesis.

I. INTRODUCTION

Commercially available upper limb myoelectric prostheses
are commonly controlled with the amplitude of EMG signals.
Due to the limited functionality and the lack of intuitive
control [1-2], current myoelectric prostheses are often
discarded by users. In order to improve the control
performance of myoelectric prostheses, EMG-PR based
prosthetic control approaches have been proposed for a
couple of decades and well investigated with many research
groups worldwide [3-15]. These studies have showed that
EMG-PR based control methods have the potential to allow
users for easier and natural control of myoelectric prostheses
with multiple degrees of freedom. Most previous efforts
concentrated on evaluating the capability of EMG-PR
algorithms in classifying a number of motion classes involved
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in amputated arms in an ideal laboratory setting. Recently,
some disparities between a laboratory setting and practical
use of a myoelectric prosthesis have also caught much more
attentions of the research groups. The effects of some issues
that would be inevitably encountered in the clinical setting on
control performance of myoelectric prostheses have been
investigated [7-9]. For instance, Tkach et al. investigated the
effect of EMG signal changes due to recording condition alter
such as electrode location shift, muscle contraction variation,
and muscle fatigue overtime [7], Simon et al. reported the use
of decision-based velocity ramp that could attenuate
movement speed after a change in classifier decision [8], and
Young et al. investigated how the size of the electrode
detection surface and the electrode orientation affect the
robustness of EMG pattern recognition based prosthesis
control system [9].

Another important disparity between a laboratory setting
and a practical setting is the arm position changes. In most of
previous investigations, EMG signals recorded in one
specific arm position were used to train and then test a motion
classifier. Thus the high classification accuracy could be
often achieved in this experimental setting. However, when
doing a movement in different arm positions from the specific
training position, the EMG recording patterns would be
changed, resulting in the decrease of motion classification
accuracy. Recently, a couple of research groups have
conducted the studies with able-bodied subjects and/or arm
amputees to evaluate the effects of arm position variation on
the classification performance and propose some methods to
reduce this kind of effect [10-12]. These findings indicated
that the influence of arm position changes on the motion
classification performance was significant and some methods
could diminish their impact.

As usual, these previous studies used classification
accuracy (or error) as a performance metric to assess the
influence of arm position variation on prosthetic control
performance. It is important to note that the classification
accuracy is the ability of a classifier to identify a desired
motion class while a subject holds different movements for
several seconds. The offline accuracy is calculated by
post-processing EMG recordings, not a true measure of
real-time control performance of prosthesis. Thus, it remains
unclear how the arm position variation affects the control
performance of myoelectric prosthetic system in real-time
operation. Furthermore, real-time performance metrics are
required to examine the clinical robustness and accuracy of
pattern recognition control.

In this study, we first investigated the effect of diverse arm
positions on the real-time control performance of
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multifunctional myoelectric prostheses with ten able-bodied
subjects. And then the performance of a two-stage cascade
classifier in diminishing the impact of arm position variation
would be estimated. Both EMG and mechanomyogram
(MMGQG) signals recorded simultaneously were used as input
signals of the cascade classifier to identify a number of arm
movements. An experimental protocol was designed to
mimic the situation of the real-time control of myoelectric
prostheses. Three real-time control performance metrics
(motion-selection time, motion-completion time and
motion-completion rate) proposed by Li et al. [13-14] were
adapted in the study. In addition, a new performance metric
called dynamic efficiency was proposed to assess how well
the target task was successfully completed by a subject. This
study would provide important guide to make myoelectric
prosthesis systems be clinically viable.

II. METHODS

A. Participants and Data Acquisition

Ten able-bodied subjects (3 male and 7 female) aged from
22 to 33 participated in the study. The protocol of this study
was approved by Shenzhen Institutes of Advanced
Technology, Chinese Academy of Science. All subjects gave
written informed consent and provided permission for
publication of photographs with a scientific and educational

purpose.

A commercial wireless biological signal acquisition system
(Delsys Inc, Boston, USA) was used to acquire EMG data
acquisition with four bipolar EMG sensors. Each EMG sensor
is integrated with a built-in tri-axial accelerometer, so the
EMG and Mechanomyography (MMG) signals could be
recorded simultaneously with the hybrid sensors. For each
subject, two sensors were placed on the proximal end over the
pronator muscle and supinator muscle, and another two were
placed on the distal end over the flexor muscle and extensor
muscle, respectively. EMG signals were filtered with a
band-pass filter (20-450 Hz) and MMG signals were filtered
with a low-pass filter (50 Hz). A commercial data acquisition
card (USB-6218, National Instruments Corp.) was used to
convert the analogue signals from Delsys system into digital
signals and send them to a computer. The sampling rate of
both EMG and MMG signals was 1kHz.
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Figure 1. Five arm positions in the sagittal plane

Five arm positions (Fig.1) and seven classes of forearm
movements were considered in the study. The seven forearm
motion classes were hand open/close (HO/HC), wrist flexion/
extension (WF/WE) and wrist pronation/supination (WP/WS)
plus one “no movement (NM)” class. Every subject was asked
to follow the prompt image of a movement to perform the
seven forearm motion classes in each arm position with a

moderate-force muscle contraction. Each movement
contraction were sustained for 4s and repeated twice, thus 8s
hybrid signals (EMG and MMG) could be recorded for each
motion class in an arm position and then used for classifier
training and testing.

B. Pattern-Recognition Based Classifiers

Two classifier configurations, single-stage classifier and
two-stage cascade classifier, were applied in the study. For
each subject, a conventional single-stage classifier was trained
with EMG recordings from one specific arm position and used
for the identification of the seven movements. A cascade
classifier newly proposed by our group was consisted of two
sequential classifiers, as shown in Fig. 2. The first stage was
trained with MMG recordings as a position classifier to
identify the arm positions and the second stage was trained
with EMG recordings as a motion classifier to classify the
classes of seven movements in an arm position. Each of the
five arm positions had a motion classifier, totally five motion
classifiers in the second stage.

In the study, four time-domain features (mean absolute
value (MAV), number of zeros crossings, number of slope
sign changes, and waveform length) for EMG data and three
time-domain features (MAYV, variation and maximum value)
for MMG data were extracted from signal recordings to form a
feature matrix. A shifting analysis window with a time length
of 150ms and a time increment of 50ms was used in feature
exaction. Linear discriminant analysis (LDA) pattern
recognition algorithm was used to build the classifiers.
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Figure 2. Configuration of the two-stage cascade classifier.

C. Motion-Test Environment and Performance Metrics

A Motion-Test environment (MT) was developed to
mimic the situation of the real-time control of myoelectric
prostheses with aforementioned classifier configurations. The
conventional single-stage classifier was firstly used to
evaluate the real-time control performance of multifunctional
myoelectric prostheses, and then the two-stage classifier was
applied to attenuate the impact of arm position variation, thus
all subjects were required to participate in two real-time
experiments. With the two-stage cascade classifier in real-time
experiment, the position classifier was first used to identify the
target arm position for choosing a movement classifier
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corresponding to the arm position, and then the selected
motion classifier was used to recognize the target class of
movements.

In either of the two real-time experiments, each subject
was required to follow a target motion image and a target arm
position image that randomly prompted on computer screen to
perform the seven motion classes for three times in each of the
five arm positions. Totally, each subject needed to execute 105
movements. A motion trial was considered completed if it was
successfully performed through the full range of a motion
within 5-second time limit. Dynamic data were recorded and
used to quantitatively evaluate the real-time control
performance.

Four performance metrics were used to evaluate the
real-time performance of proposed classifier configurations,
which were the motion response time, motion completion time,
motion completion rate, and the dynamic efficiency. The
former three metrics were adapted from previous studies
[13-14], thus only simple definitions were given herein. The
response time was defined as the time from the target
movement start to the first time that the subject performed the
target movement correctly. The time from the first correct
movement identification to motion completion was defined as
the completion time. The motion completion rate was the
percentage of successfully completed motions out of the total
attempted motions (105 target motion tasks in each of two
real-time experiments) within the time limit. The dynamic
efficiency was used to describe how well the target task was
finished, which was defined as the percentage of number of
correct decisions (target class) over total number of decisions
from the first correct decision to the target task achievement,
as shown in Fig. 3. The completion time and dynamic
efficiency were only calculated for successful tasks. Paired
t-test was used to assess the statistic difference between the
means of compared data.
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Figure 3. Definition of the Dynamic Efficiency

III. RESULTS

The offline average classification accuracy across all
subjects when using single-stage classifier as well as that
when using cascade classifier with hybrid signals were around
99.0%, because the position classification accuracy with
MMG data had always kept 100% in cascade classifier
configuration. Fig. 4 shows the offline motion classification
accuracy and motion completion rate from the two classifier
configurations for all ten subjects. When using a two-stage
cascade classifier in real-time MT analysis, the average
completion rate across all subjects was around 90.2%, which

was about 4.9% higher than that (85.3%) when using a
conventional single-stage classifier (p-value<0.01). It can be
seen from Fig. 4 that except subject #6 (ABO06), all other
subjects could achieve higher motion completion rates with a
cascade classifier in comparison to those with a single-stage
classifier.
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Figure 4. Offline classification accuracies and real-time
completion rates when using the two classifier configurations for
all ten subjects, respectively. The green solid circles denote the
offline classification accuracy.

o
wu
(=]

o
o
o

75.0

70.0

Completion Rate (%)
co co
(=] w
=) [=]
Togy
cogy [ —

poqy
orTgy E—

gogy
(ogy

gogy T

gy

Table I summarizes three performance metrics from two
classifier configurations. The values of Table I were averaged
over all the ten subjects. Compared to the conventional
single-stage classifier, the cascade classifier had a shorter
average response time by 0.06s (p-value=0.02), whereas the
completion time and dynamic efficiency were no significant
different between the two classifier configurations.

TABLE L COMPARISON OF PERFORMANCE METRICS IN TWO
CLASSIFIER SCHEMES
. Response Completion Dynamic
Classifier Scheme Time (s) Time (s) Efficiency
Single-Stage 0924011 | 1.184+011 | 86.4+4.5%
Classifier
Cascade Classifier 0.86£0.09 1.18+0.06 87.3£2.9%

Fig. 5 shows the average completion rate over all the ten
subjects versus the five arm positions (Fig. 5(a)) and the
average completion rate versus the seven motion classes (Fig.
5(b)). When using the cascade classifier, subjects could
achieve a higher average completion rate in four of the five
motion positions (except in the position P3) than that when
using the single-stage classifier (Fig. 5(a)). The maximum
difference of motion completion rates between the two
classifier configurations was observed in the position P1, with
an increase of about 13% when using cascade classifier over
the single-stage classifier. In position P3, the two classifier
configurations showed a similar completion rate. The average
completion rate over all the five arm positions was higher in
five of the seven motion classes (Fig. 5(b)) when using the
cascade classifier than that with a single-stage classifier. The
completion rates increased by approximate 10% for WP, WS
and RT. For hand open class, the completion rate with the
cascade classifier was about 4% lower than that with the
single-stage classifier.
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Figure 5. {(a) Completion rate vs. arm positions and

{b) Completion rate vs. motion classes.

IV. DISCUSSION

With a single-stage classifier trained with four channels of
EMG signals, the offline average motion classification
accuracy across all the seven arm positions and all the ten
participants was around 99.0%. However, the real-time
motion completion rate was only 85.3% with the trained EMG
classifier (Fig. 4); this indicated that arm position changes
would substantially affect the real-time performance of EMG
pattern-recognition based prosthesis control. This also
revealed a low correlation between offline classification
accuracy and real-time performance, which is consistent with
a previous study [15]. Therefore, it is necessary to investigate
the real-time performance of EMG pattern-recognition based
control methods in practical setting before making a
myoelectric prosthesis clinically viable.

Using a cascade classifier trained by hybrid EMG and
MMG signals to replace the single-stage EMG classifier, the
average real-time completion rate over all subjects could be
significantly increased. In addition, compared to a
conventional classifier configuration, a cascade classifier
configuration could achieve similar or a little better real-time
performance in response time, completion time, and dynamic
efficiency. These suggested that the cascade classifier would
be less sensitive to arm position changes than the conventional
EMG classifier. Note that generally speaking, a cascade
classifier configuration outperformed a conventional EMG
classifier configuration. However, a cascade classifier did not
work well in all cases. It can be seen from the results showed
in Fig. 5 that in some cases, the cascade classifier had similar
or lower real-time performance as or than the conventional
classifier.

Note that only able-bodied participants were included in
this study. Most of them had some previous experience in
EMG recording experiments and were familiar with the

real-time test environment. Our previous study showed that
the amputated arms have less affected by arm position changes
than the intact arms [16]. Whether is the finding also true in
real-time control of a myoelectric prosthesis? To answer this
question, the final users of myoelectric prostheses, arm
amputees, will be included in our ongoing works.
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