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Abstract— Prediction of dynamic hand finger movements
has many clinical and engineering applications in the control
of human interface devices such as those used in virtual
reality control, robot prosthesis and rehabilitation aids. Surface
electromyography (sEMG) signals have often been used in the
mentioned applications because these reflect the motor intention
of users very well. In this study, we present a method to estimate
the finger joint angles of a hand from sEMG signals that
considers electromechanical delay (EMD), which is inherent
when EMG signals are captured alongside motion data. We
use the muscle activation obtained from the sEMG signals as
input to a neural network. In this muscle activation model,
the EMD is parameterized and automatically obtained through
optimization. With this method, we can predict the finger joint
angles with sEMG signals in both periodic and nonperiodic
free movements of the flexion and extension movement of the
fingers. Our results show correlation as high as 0.92 between the
actual and predicted metacarpophalangeal (MCP) joint angles
for periodic finger flexion movements, and as high as 0.85 for
nonperiodic movements, which are more dynamic and natural.

I. INTRODUCTION

In the coming years, human assistive and tele-

manipulation technologies are expected to play a significant

role in improving the lives and well-being of the ageing

community and as well as the handicapped and injured. This

predicted growth in assistive technology will be driven by

the need to enhance functional independence and support

among them. One specific area would be in the development

of assistive devices and applications, such as exoskeletons,

that would aid in hand rehabilitation. Tele-operated devices

controlled by neural signals can give unconstrained and

precise movement control in different environments [1].

Surface electromyogram (sEMG) signals are often used in

prosthesis controls and rehabilitation support applications,

because these reflect the motor intention of a user prior to

the actual movements [2]. sEMG signals provide little delay

when used in human interfaces and have been shown to

represent muscle tension and joint positions very well.

Discrete classification of hand gestures have been suc-

cessful, reaching a decoding accuracy of above 95% and

classifying to up to more than 20 gestures [3]. However,

natural hand movement is not limited to discrete gestures

but are continuous and coordinated. As an initial step, our

research aims to predict continuous finger joint-angle from

muscle activation input.
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Studies have shown that it is possible to extract fine

finger movement information contained in sEMG signals.

Afshar and Matsuoka [1] were able to estimate index finger

joint angles from EMG embedded inside seven muscles that

specifically control the index finger. Shrirao et al. [4] were

able to decode one index finger joint angle of a periodic

flexion-extension motion at three different frequencies of

movement. Their study evaluated different types of neural

networks to predict the joint angles. Smith et al. [5] was able

to asynchronously decode individual metacarpophalangeal

(MCP) joint angles of all five fingers while moving one finger

at a time. Their study used general placement of electrodes in

muscle areas available to transradial amputees and extracted

sEMG time-domain features used as input to also a neural

network to predict MCP joint angles.

However in the previous studies [4][5], a time delay

between the onset of the sEMG signal and exerted movement

was present and observed. This time delay is called hysteresis

or electromechanical delay (EMD). It is often compensated

by introducing a time-delay line or manually realigning the

EMG to the joint angle data before training is done. This

delay can vary depending on many different factors such as

muscle shortening velocity, type of muscle fiber, and fatigue

[6]. In our method, we introduce this delay as a parameter,

by using an EMG-to-Muscle Activation Model, which is

determined along with other parameters through optimiza-

tion. Here, we investigate the use of muscle activation as

input in predicting both periodic and nonperiodic flexion and

extension movement of all five finger joint angles. We try to

predict the angular position of each finger joint, namely, the

metacarpophalangeal (MCP), proximal interphalangael (PIP)

and the distal interphalangeal (DIP) joints.

II. METHOD

A. Experimental Set-up

The system is composed of a surface electromyograph

and an optical motion capture device. Surface EMG signals

are extracted from 8 extrinsic muscles of the hand that are

known to contribute to wrist and finger movements . These

muscles are the Abductor Pollicis Longus (APL), Flexor

Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS),

Flexor Digitorum Profundus (FDP), Extensor Digitorium

(ED), Extensor Indices (EI), Extensor Carpi Ulnaris (ECU),

and Extensor Carpi Radialis (ECR). Twenty markers for

motion capture are attached on one hand, with each marker

located on each finger joint. The sEMG signals are measured

using a compact BA1104 electromyograph with active-type

(Ag/AgCl) electrodes and interelectrode distance of 20 mm,
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Fig. 1. The experimental setup. SEMG electrodes and motion markers
attached on the subject’s forearm and finger joints, respectively.

and a telemetry unit TU-4. Both devices are from the Digitex

Laboratory Co. Ltd. The hardware provided a high-pass

filter with cut-off frequency of 1 kHz during the EMG data

acquisition process. While finger movements are made, the

motion is recorded using a MAC3D motion capture system

(Motion Analysis Corp.). The sEMG signals are sampled at

2 kHz, and are input to the A/D converter, while, the finger

motions are sampled at 200 Hz with measurement units in

millimeter, having a precision of 0.5 mm. With the x, y, z

positions of each marker continuously recorded, the angular

position of each finger joint, namely, the MCP, PIP and DIP

angles are calculated.

B. Data Collection

A healthy male subject (age 25), with no known physical

impairments, was seated with his elbow positioned on a flat

surface in a comfortable position. For the first part of the

experiment, the subject was tasked to move one finger at

a time, while the other fingers including the rest of the

arm remained in neutral position. The subject was told to

periodically move the finger in the flexion and extension

plane, reaching maximum flexion and extension of the finger

at least once. Ten trials were done for each finger, with each

trial lasting 20 seconds. All in all, 5 sets of EMG and motion

data were obtained from individual finger movements. For

the second part of the experiment, the subject was tasked to

randomly and freely move his finger, following no constant

periodicity. Ten trials were also done in this free-form

movement. All trials were sequentially done and the subject

was allowed to rest anytime during the experiment.

C. Data Preprocessing

The raw sEMG signals were first preprocessed into a

form, that after further manipulation, can be used to estimate

muscle activation [6]. The sEMG signals are rectified and

normalized by the maximum voluntary contraction (MVC),

obtained from each muscle throughout the entire duration of

the experiment. The signals are then filtered using a 2nd-

order low-pass filter with cut-off frequency of 4 Hz. This

is done prior to obtaining the muscle activations, which are

highly related to muscle force found in low frequencies. The

filtered sEMG signals were then downsampled to 200 Hz

to match that of the motion data. With the exception of the
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Fig. 2. The left figure shows a measured joint angle, alongside with a
filtered sEMG signal and its muscle activation transformation. While the
right side shows two prediction results, one with EMD, and one without.

thumb, which we considered only two joints of interest, the

remaining fingers produced all three angles of interest. Thus,

a total of 14 joint angles were obtained. A low-pass filter with

cut-off frequency of 10 Hz was also applied on the motion

data, to remove noise and jitters in the signal.

D. EMG-to-Muscle Activation Model

For any intended motor action, it is known that there

occurs a time delay, which is known as the electromechanical

delay (EMD), between the onset of the sEMG signals and the

exerting tension in the muscles. EMD has been observed by

previous studies in the leg and as well as in the arm [4][6].

EMD has been reported to range from 10 ms to about 100

ms, but varies differently depending on the intended tasks [2].

Thus, EMD cannot be ignored in sEMG studies involving

motor actions, and must be considered accordingly.

To learn a suitable filtered signal which automatically

considers EMD, we introduce the use of a so called EMG-

to-Muscle Activation model. EMG is a measure of electri-

cal activity that spreads across muscles, which causes the

muscles to activate. This results to the production of force,

to which the model used transforms the sEMG signals to

a suitable force representation. Zajac modeled this muscle

activation dynamics using a first-order recursive filter [7].

While Buchanan et al. created a second-order model filter

that models the relationship between EMG and muscle

activation [6]. In this study, we make use of their filter:

u j(t) = αe j(t −d)−β1u j(t −1)−β2u j(t −2) (1)

where e j(t) is the preprocessed EMG of muscle j at time t,

In this model, α , β1, β2 are recursive coefficients and d is

the EMD. Filter stability is guaranteed by putting constraint

conditions on α , β1, and β2.

β1 = γ1 + γ2 (2)

β2 = γ1 · γ2 (3)

|γ1|<1, |γ2|< 1 (4)

α −β1 −β2 = 1 (5)

The transformation to muscle activation v j is given by:

v j =
eA ju j(t)−1

eA j −1
(6)
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Fig. 3. Index finger joint angle prediction for 1 test trial of periodic motion.
The correlation coefficient between the predicted and measured MCP, PIP,
and DIP angles are 0.92, 0.82, and 0.75 respectively. While the parameters
obtained are d = 40ms, γ1 = γ2 =−0.9748, and A j =−1.26.

where A j is a parameter that introduces the nonlinearity

between EMG and muscle activation, and is constrained

between −3 (highly exponential) and 0 (linear).

This model not only solves the EMD of the muscle, but

also requires only a few parameters. The parameters of this

filter, γ1, γ2, d, and A are obtained by using constrained

nonlinear programming in Matlab’s Optimization Toolbox to

minimize a cost function:

∑
t

(θest −θtarget)
2 (7)

where θest and θtarget are the estimated and measured finger

joint angles, respectively. If we only want to map the EMG

signals to a single finger’s joint angles and if the training time

needs to be fast, then a linear estimation of the joint angles to

obtain θest would suffice. However, the complex relationship

between the muscle activation, and the corresponding joint

angles are known to be nonlinear. Hence, we resort to using

an artificial neural network as our nonlinear estimator.

E. Artificial Neural Network for Regression

In general, neural networks are considered to be attrac-

tive for nonlinear modelling because of their ability to

approximate any arbitrary functions [10]. We use the muscle

activation, which is related to muscle force, as input to an

artificial neural network. In our study, a simple feed forward

network was used. The network is made up of 3 layers:

an input layer, a single hidden layer with a tan-sigmoidal

activation function, and a single linear output layer. The

input layer had 8 nodes coming from the muscle activation of

the each muscle, while the output has 14 nodes consisting

of the finger joint angles. To train the network, we input

a set of training data to the neural network and minimize

a mean square error function. We evaluated the network’s

performance with various number of neurons in the hidden

layer, ranging from 5 to 250. To avoid overfitting, total data

set was divided into a training and a validation set and apply

an early stopping method during training iterations [11].
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Fig. 4. Index finger joint angle prediction for 1 test trial of free random
motion. The correlation coefficient between the predicted and measured
MCP, PIP, and DIP angles are 0.88, 0.52, and 0.60 respectively. While the
parameters obtained are d = 50ms, γ1 = γ2 =−0.9618, and A j =−1.

In all of the six tasks of the experiment, 8 out of 10 trials

were used for training while the remaining 2 were used for

testing. All the data in each task were concatenated together

to form a larger training and test dataset.

III. RESULTS AND DISCUSSION

With the neural network trained, we now estimated all

finger joint angles simultaneously. Figure 3 shows the result

of the index finger joint angles in one test trial involving

that of a periodic motion. Correlation as high as 0.92 was

obtained for the MCP angle estimation. While the prediction

of the PIP and DIP joint angles were consistent, which were

about 0.8 and 0.7 correlation, respectively. Processing the

sEMG into its muscle activation dynamics was straightfor-

ward. For this trial, the EMD obtained was 40 ms, suitably

aligning the sEMG onset to the motion data. This model

works very well for motion with constant velocity where

EMD is approximately the same in a trial.

Similarly, figure 4 shows the result of the predicted index

finger joint angles but in a test trial involving free and random

movement of the fingers. The predictor is able to predict

the index finger joint angles rather well, but not as accurate

as when movement was limited to constant frequency. In

this trial task, EMD varied differently, depending on the

movement. The optimization step chooses the best possible

values for EMD from the training data, but does not account

for the EMD changes resulting from different velocities. Also

in the previous task with the periodic motion, the two lesser

angles followed movements similar to the MCP angles, but

for random motions, they may totally differ. The muscle

activation input that we use does not give an explicit feature

that relates the angles from one another.

Because we were able to predict all finger joint angles

accurately in some trials, a 5-fold cross validation was

conducted to see the overall statistical performance of the

predictor. Figure 5 and figure 6 show the average correlation

coefficients and mean overall normalized root-mean-square
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Fig. 5. The blue and red bar graph shows the mean correlation coefficient
of the predicted and actual joint angle results, when the muscle activation
model was not used and when it was used, respectively. T, I, M, R, and L
x-axis label represent the thumb, index, middle, ring, and little finger, while
the numbers 1,2, and 3, are the MCP, PIP, and DIP angles, respectively.

error (NRMSE) of the estimated and measured finger joint

angles, respectively, of all the test data partition in the

cross validation. Here, we compared the estimation per-

formance of two cases, when the proposed biomechanical

muscle activation model was used and when it was not used

(using only the filtered sEMG as input). We can see that

using the proposed model gave better prediction results and

lesser mean errors (about 0.05 to 0.15). For MCP angles,

correlation coefficients of above 0.8 were achievable. This

is consistent and can even go as high as 0.9 when the

movement condition is constrained (e.g. in predicting only

individual finger as opposed to simultaneous movement, or

in predicting only periodic movements as opposed to random

finger movements).

Our current method captures the general trend of the finger

movement. We have shown that we can use muscle activation

features as input to a regressor to continuously predict finger

joint angles. A reliable biomechanical model that relates the

lesser angles (PIP and DIP) to the MCP angle would better

improve the system and estimation, even for random motions.

In this study, we have shown that by using muscle activation

dynamics, parameters such as the EMD can be determined

through optimization, which automatically synchronizes the

muscle activation to the actual finger actuation, resulting to

a smoother and accurate prediction of the joint angles.

IV. CONCLUSION

This paper presented an alternative method in predicting

finger joint angles using a muscle activation model that

parameterizes electromechanical delay (EMD), which has

been observed by numerous investigators. Automatically de-

termining this delay improves the synchronization of sEMG

signal and the finger joint angle thus providing better esti-

mation. We have shown that during testing, we were able

to predict finger joint angles with reasonable accuracies

for both periodic and random finger movement. Because

fine hand movement is complex, future work would include
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Fig. 6. The green and yellow bar graph shows the mean normalized
root-mean-square error (NRMSE) of the predicted and actual joint angle
results, when the muscle activation model was not used and when it was
used, respectively. Like in figure 5, the x-label axis represent the same
corresponding finger joint angles.

investigating other factors such as finger force, and analyzing

different muscle activation patterns in doing skillful activities

that require the use of the fingers.
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