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Abstract— Decoding with the important neuron subset has 

been widely used in brain machine interfaces (BMIs), as an 

effective strategy to reduce computational complexity. Previous 

works usually assume stationary of neuron importance, which 

may not be true according to recent research. We propose to 

conduct a mutual information evaluation to track the 

time-varying neuron importance over time. We found worth 

noting changes both in information amount and space 

distribution in our experiment. When the method is applied with 

a Kalman filter, the decoding performance achieve is better 

(with higher correlation coefficient) than when a fixed subset, 

which shows that time-varying neuron importance should be 

considered in adaptive algorithms. 

I. INTRODUCTION 

Brain machine interfaces (BMIs) provide an alternative 
pathway between the brain and an external machine. Neural 
activities are collected by electrodes implanted in multiple 
cortical areas to decode movement position or velocity, while 
people or animals are performing a task like 2-D or 3-D target 
tracking, self-feeding [1-3].  

Since well-modulated neurons can’t be precisely detected 
during surgery, as many neurons as possible are utilized to 
complete the decoding procedure. Generally, 20 to 40 neurons 
required in the mouse, while 100 to 200 for non-human 
primates. The number may grow up with the complexity of 
movement, which imposes a heavy burden on computation 
and hardware resources. However, only 30%-40% of these 
neurons contribute significantly to the decoding [4]. The rest 
of neurons are weakly related to the movement or noisy. 
Therefore, selecting a subset of important neurons is one 
efficient way to solve this problem. 

Several methods have been proposed to evaluate neural 
importance. One study performs the evaluation based on a 
certain decoding model [5-7]. The authors provide a direct 
view into the effectiveness of every neuron to decoding, but 
the results are limited by model generalization. Different 
models may lead to different ranking results. Another study 
attempts to assess neural importance independently from the 
decoding approach. The authors consider the individual 
correlations between a single neuron and corresponding 
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kinematic variables, using statistical methods such as 
ANOVA [8] or information theoretic analysis [9]. 

Studies have shown that the representation of movements 
by neural populations keeps changing over time [10]. Several 
reasons may contribute to this observation, such as an unstable 
recoding system, neuronal plastic and motor learning [11]. As 
a result, decoding with a parameter-fixed model will give 
worse prediction as time progresses into testing [12]. Many 
works have addressed this topic. A widely applied approach is 
constructing an adaptive model and updating the parameters 
when new observations of the neural patterns are available 
[13-17]. Alternatively one can find when the tuning properties 
change and adjust accordingly the parameters of the tuning 
curve [18-19]. Obviously, these methods become more 
sensitive with the dimension of the input space, because the 
computational complexity will increase with the updating. 

As mentioned above, selecting an important subset and 
updating it in time is a good approach to provide a more stable 
result with less computation. In this paper, we extend a 
previous work on mutual information evaluation to analysis 
the time-variant property of the important subset, and compare 
the decoding performance with fixed subset and changing one 
in Kalman filter. A short review of method is given in section 
2. And the analysis results and comparison of decoding are 
presented in section 3, followed by the discussion. 

II. DATA COLLECTION AND METHODS 

A. Data Collection 

The experimental paradigm was implemented in Dr. 
Miguel Nicolelis laboratory at Duke University. 
Microelectrode arrays were chronically implanted into five 
regions of a female Rhesus monkey: right dorsolateral 
premotor area (PMA), right primary motor cortex (M1), right 
primary somatosensory cortex (S1), right supplementary 
motor area (SMA) and the left primary motor cortex (M1). A 
multi-channel acquisition processor system (MAP, Plexon, 
Dallas, TX) was used to record the neural action potentials. 
Analog waveforms were amplified and band pass filtered from 
500Hz to 5 kHz. Totally, 185 neurons’ were probed and 
sorted using a principal component analysis algorithm. Table 
1 shows the assignment of the sorted neurons for different 
cortical areas. An optimum time interval of 10 ms was 
selected to translate the spike trains into a sequence of 1 
(spike) and 0 (no spike) as multi-channel point process 
observations. The monkey was trained to move the cursor on a 
computer screen with a joystick to reach the target in 2D 
plane. The corresponding position of the joystick was 
synchronously recorded at a sample rate of 50Hz. We 
collected both the neural activities and movement data for 
1750 seconds. 
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TABLE I.  ASSIGNMENT OF THE SORTED NEURONS FOR DIFFERENT 

CORTICAL AREAS 

areas 
Right 

PMA 

Right 

M1 
Right S1 

Right 

SMA 
Left M1 

neurons 1-66 67-123 124-161 162-180 181-185 

B. Evaluating neuron importance in time  

Towards a spike train  with 0 and 1 only, and the 

corresponding delayed kinematics observations , the 

mutual information is defined as 
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where  is constructed as , where 

1 works as the bias, p is the position of the joystick, v and a are 

velocity and acceleration of joystick correspondingly. 

( )f y
y lag

 is the pdf of the kinematics evaluated as a function of 

time lag.  is the firing rate, which can be calculated as 

the percentage of 1s in the spike trains.  is the 

neuron’s tuning curve. Several kinds of tuning curves have 

been proposed to explain how information is encoded in the 

spike trains. In this paper, we utilized the extended 

linear-nonlinear-Poisson model [19], shown in figure 1. First, 

the linear filter projects the kinematics vector into its preferred 

direction , producing a scalar value . Then the 

nonlinear  converts it to the instantaneous conditional firing 

probability , which applied to the Poisson model generates 

the spike train. We refer the reader to [9], [19] for additional 

details. If we replace  in equation (1) with , 

 it is exactly the nonlinear function . 

 

Figure 1.  Block diagram of linear-nonliear-Poisson model. 

C. Kalman filter 

 We would like to remark at this point that Kalman filter is 

not the sole possibility to evaluate the decoding performance. 

Kalman filter is a widely used decoder in BMI system. It 

assumes a Gaussian distribution both on system state and 

noise. With the state equation (2) and the observation equation 

(3), the Kalman filter predicts the prior distribution of the state 

parameters and revises the posterior distribution in a recursive 

manner. For more details please refer to [20]. 
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where y is the system state, spk is the observation of the 

system,  w and v represent the process and measurement 

noise respectively. 

III. RESULTS AND ANALYSIS 

To avoid the effect of unstable animal behavior, we ignore 
the first 200 seconds data and the last 150 seconds data. The 
remaining data is separated into 14 segments with a length of 

100 seconds each. The length of segment is open to discuss. It 
can’t be too small, as time-variant is not obvious in short time, 
also it can’t be too large, as computation complexity grow. In 
each segment, we calculate the mutual information of 185 
neurons with different lags (from 0 ms to 50 ms with a step of 
1 ms), and the best lag is selected as the one producing the 
maximum mutual information (MMI). Then, the neural 
importance is ranked according to MMI. Figure 2 gives the 
overview of the results, and shows a clearer example of MMI 
on the first segment. 

 

Figure 2.  An overview of MMI on 14 segments (above); An enlarged 

example of the first segment (below). 

As shown in figure 2, the neurons in PMA and left M1 give 

a low MMI constantly, while several neurons in right M1, S1 

and SMA show a high correlation. But the number of neurons 

with high information is small, just around 15 to 30. And the 

more important thing is that the MMI of all neurons keeps 

changing along time. Figure 3 gives four examples of how 

MMI changes along 14 segments. 
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Figure 3.  The variation of four typical neurons along the time. 

In Figure 3, the MMI of the 72th (blue line) and 80th (red 

line) neuron in right M1 drops down, while the MMI of the 

76th (green line) and 112th (cyan line) neuron in right M1 

climb up slowly. Taking the 80th neuron as example, the MMI 

of the second segment drop 33% from the first segment. It 
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means in as short as 100 seconds, an obvious change on MMI 

can be observered. Among the 185 neurons, about 5% show a 

dropping trend, while 3% neurons show climbing trend. 

Although 90% of the neurons seem steady along time, most of 

them are weakly correlated with the movement, and their 

MMI is always smaller than 0.005, which contribute less to 

decoding. 

To select the important neuron subset, we sorted the 

importance of neurons by its MMI in descending order for 

each segment. Figure 4 clearly shows an inflection point 

around the 30th neuron on most of these 14 segments. The 

information contained in neurons after rank 30 is weak and 

can be neglected. So we choose the first 30 neurons to 

construct an important subset, marked as , where  is the 

index of data segments, from 1 to 14. 

 
Figure 4.  MMI of 185 neurons in descending order of 14 segments 

Figure 5 lists the selected subsets. Every point is a selected 

important neuron. Each row is an important subset when the 

ordinate presents the index of data segments. The important 

neurons seem to assemble in the right M1 and SMA. About  

50% of neurons remain in the important subset, while others 

jump outside or vice versa. 
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Figure 5.  The distribution of important neural subset in 14 segments 

As shown in figure 5, the important neural subset changes 

its spatial distribution. Also, we know the information amount 

contained in a certain neuron is changing over time. To figure 

out how much they changed, we further compare the total 

information amount contained in the first subset and in the 

current subset. In figure 6, the blue solid line shows the 

information contained in the neurons of the first important 

subset  and the red solid line shows the information 

contained in the current subset . The difference is obvious 

and grows along time. The subset  contained 5.5% higher 

information than  at the second segment, and at the last 

segment, the subset  gives a 24.7% higher information 

amount than . So with the same initial value, decoding with 

a time-varying important subset can be expected to produce a 

more stable and accurate result. 
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Figure 6.  Comparison of total information amount contained in the first 

subset and in the current subset 

To confirm this speculation, we carried out a decoding test 

using the Kalman filter. The first segment was used for 

training and any other segments can be used for testing. In 

each segment, we compare the performance by selecting the 

fixed neural subset and changing neural subset separately. In 

the fixed subset, we consistently use the neurons selected from 

the first segment, while in the changing neural subset, the 

neurons are selected from the previous segment. Figure 7 

gives an example of reconstruct results comparison.  The dash 

red line indicates the desire position in horizon (above) and 

vertical (below), the dash-dotted green line indicates the 

estimation by fixed subset and the solid blue line indicates the 

estimation by time-variant subset. We can see both methods 

could follow the desired signal, but the blue line provides a 

closer estimation at most peaks. The advantage may not be 

significant, which means there are still other time-variant 

properties we haven’t tracked.  Actually, that’s what we plan 

to do in future work. 
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Figure 7.  Kinematics reconstruction example by fixed subset and 

time-variant subset in horizon position (above) and vertical position (below) 

To further compare the decoding performance, we examine 

correlation coefficient (CC) between the decoding result and 

the desired signal in each segment. Figure 8 gives an example. 

The blue line shows the results using fixed subset and the red 

line shows the results using time-variant subset. As time 
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advances, the performances of these two methods all drop as a 

result of time-varying neural activity. In addition, the red line 

seemed to provide a better performance than the blue one. In 

the decoding result on vertical position, the CC starts 2% 

higher at the second segment and the advantage goes up to 

36% at the last segment. However, as noticed in figure 3, some 

neurons jumped out of the important subset in a certain 

segment, and came back again later. In this situation, the 

important subset selected from last segment may not perform 

well. 
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Figure 8.  CC between the decoding result and desired signal on 13 segs in 

horizon position (above) and vertical position (below) 

IV. CONCLUSION AND DISCUSSION 

In this paper, we propose to use information analysis to 

select a member-changing important neural subset in 

movement decoding for brain machine interfaces. Mutual 

information shows a significant change on both the 

information amount and the members contained in the 

important subset. Then, we compare the decoding 

performance using Kalman filter with the fix subset and the 

time-variant subset. Although both performances drop along 

time, the time-variant important subset provides more steady 

result.  

Besides the changing member of the important subset, the 

variation on tuning curve is also worth discussing. As shown 

in other research [10-11], neurons may respond differently as 

time pass. As a sequence, the tuning curve used in decoding 

models should be adjusted in time. In future work, we will 

focus on establishing a time changing tuning function 

regression model utilize a member-changing important subset, 

hoping to perform the decoding task better for the 

Brain-machine interfaces. 
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