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Abstract— Errors in clinical laboratory tests lead to increased
costs and patient risks. Such errors are relatively rare, affecting
∼ 0.5% of samples. Existing techniques for detecting errors have
either far too low sensitivity or specificity to be useful. This
preliminary study develops statistical sample selection criteria
that capture faults upwards of fifty times more efficiently than
expected from random sampling. Although this is only the first
step towards an integrated discriminant system for reliable
detection of laboratory errors, the statistical detection scheme
demonstrated here outperforms existing methods.

I. INTRODUCTION

The clinical laboratory is the major producer of informa-

tion used to diagnose, treat, and monitor patients. Carraro

and Plebani [1] estimate that 40% of all decisions concerning

intensive care patient management are based on laboratory

data. Errors in clinical laboratory tests lead to delays in

treatment, or erroneous treatment and clinical investigation,

and hence additional costs and increased patient risks.

The accuracy of data generated by the clinical laboratory

is critical for optimum patient care, safety, and economy.

The actual total costs associated with laboratory error have

been difficult to quantify because estimates often do not

account for consequences such as patient trauma, emotional

and economic costs to the patient’s family, and stress on vital

organs contributing to co-morbidity and to premature death

[2]1.

The ability to accurately identify true laboratory errors,

and take the necessary corrective action when such errors are

discovered is difficult in the clinical laboratory setting. The

large number of samples that are submitted to the clinical

laboratory daily, the multitude of analytes measured, and an

emphasis on reporting tests results as quickly as possible are

not conducive to detection of laboratory errors.

The current dominant technique for error identification

uses measurement of quality control materials to identify

instrument mis-calibration. These quality control checks are

inadequate for several reasons. First, they are most sensi-

tive to errors in instrument calibration. The technique is

completely blind to errors made during the pre-analytic

phase that includes sample collection, transport, storage and
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1One study estimates that errors in measured total calcium concentrations
due to instrument mis-calibration alone cost $60M to $199M annually in
the United States [3].

handling, all before samples reach the analytical instrument.

Carraro and Plebani [1][4] estimate that more than 60% of

errors occur in this pre-analytic phase. Thus, more than one-

half of laboratory errors are in principal undetectable by

the current most common assurance method. Second, quality

control test materials are often animal-based with added

stabilizers and surfactants and do not react with analytic

reagents the same as human samples, leading to possible

errors. Third, quality control checks cannot identify errors

that are specific to particular samples and thus specific to an

individual patient’s test results [5][6]. Finally, quality control

checks are performed infrequently — typically three times a

day. If an instrument falls out of calibration between checks,

hundreds of test results may be erroneous and those samples

need to be re-analyzed, or even re-collected. This impairs

critical patient care and increases costs.

A. Using Patient Data to Detect Errors

The limitations of quality control checks for error detec-

tion led to the development of techniques based on patient

data [5][7]. In principle, such techniques can detect errors in

the pre-analytic phase, and they can respond to analytic in-

strument faults quicker than quality control checks. However

the existing methods — delta checks, absurd value checks,

and anion gap analysis — have significant shortcomings.

Delta Checks use measurements from two consecutive

samples produced within fairly short time intervals. The

changes in concentration of the compounds measured (called

the analytes) are recorded. If these changes exceed es-

tablished limits (based on maximum expected physiologi-

cal change between the sample collection times), then the

analyte measurement is repeated on both samples. If the

second measurement set also exceeds the change limit, one

or both of the samples are at fault and new samples must be

collected. Repeated measurement and collection are costly,

and the false alarm rate is so high (low specificity) that

detection flags are routinely ignored in practice [8]. Delta

checks are inadequate.

Absurd Value Checks are univariate outlier detection tests.

Measurement values generally considered to be incompatible

with life are flagged as not likely to be correct [5]. These tests

do not consider the dependencies between multiple analytes

[5][9], and have extremely low sensitivity. Goldschmidt and

Lent [10] estimate that up to 75% of laboratory errors

produce measurements falling within acceptable univariate

reference intervals, and so would remain unflagged by absurd

value checks. Efforts to date to use interdependencies be-

tween analytes are rule-based and typically evaluate only two

to four analytes at a time. Unlike probabilistic methods, they
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are intolerant of missing data values and cannot easily be

extended to deal with many analytes, and disease-dependent

or treatment-dependent contingencies.

Anion Gap Analysis is based on the concentrations of

sodium, chlorine, and total carbon dioxide; if the quantity

CNa − (CCl +CTotal C02
)

is zero or negative, then one of these analytes was incorrectly

measured. The test is only sensitive to errors in these

analytes.

The study reported here shows that simple multivari-

ate statistical criteria identify laboratory test errors that

univariate outlier analysis completely misses, consist with

Goldschmidt and Lent’s estimates. The study also shows that

statistical detection can outperform delta checking.

B. Effective Detection of Clinical Laboratory Errors

As discussed above, existing automated techniques are

inadequate, suffering from low detection and high false

alarm rates and long delays. Techniques based on statistical

modeling and fault detection that can reliably detect true

laboratory errors as they occur would represent a significant

advance over current capabilities. Such a system would

reduce costs due to sample re-collection and re-measurement,

and reduce patient risk due to delays and unnecessary or

erroneous clinical treatment.

The scarcity of faults and the cost of labeling samples

by a human expert collude to create a significant challenge.

Roughly 0.5% of all samples carry faults leading to measure-

ment error [4][11][12]. To develop and evaluate statistical

fault-detection algorithms requires (at least) hundreds of ex-

amples of faulty as well as non-faulty sample measurements.

At the anticipated 0.5% fault rate, random selection from

the population would require tens of thousands of samples

to be labeled to provide sufficient faulty samples. Labeling,

carried out by clinical laboratory test experts, uses direct

examination of laboratory test data together with review of

instrument logs and patient charts. This costs upwards of

US $10 dollars per sample. Clearly, random sampling is an

inadequate strategy to capture sufficient examples of faulty

samples; model-based selection of samples is required just

to proceed with labeling.

The goal of this preliminary study was to demonstrate that

multivariate statistical techniques can be used to efficiently

pre-screen samples for expert labeling. As a by-product,

we show that even simple multivariate statistical techniques

are significantly more sensitive error detectors than quality

control, delta-checking, absurd value, and anion gap analysis.

Furthermore they do not incur the time lags or multi-sample

costs associated and delta checking.

This study is the first step towards development and imple-

mentation of a comprehensive fault detection system for the

clinical laboratory. We envision a system that uses discrim-

inant algorithms trained iteratively with data economically

selected for labeling using active learning. A comprehensive

system will also use patient measurement trajectories during

treatment [13] to refine detection.

II. STATISTICAL DETECTION OF

CLINICAL LABORATORY ERRORS

A. Data Description

This study used data collected at the OHSU clinical labo-

ratory. The data contains tests on 25,596 specimens collected

from inpatients across various hospital units. Measurements

from two separate (but identical) instruments were used in

the study.

Appropriate for our future focus on kidney disease, this

study used analytes from the Centers for Medicare and Med-

icaid Services Renal Function Panel (RFP) which includes

measurements of: albumin, blood urea nitrogen (BUN), to-

tal calcium, carbon dioxide, chloride, creatinine, glucose,

phosphate, potassium, and sodium. (The database contains

up to 30 analyte measurements for each sample, but most

specimens have fewer than the full array measured.)

We excluded the glucose measurements due to its large

variability across and within subjects. In order to avoid

modeling complications arising from missing data values,

only specimen records that have all nine of the remaining

RFP analyte measurements were retained for this study2.

This left 3,524 specimen records.

We partitioned the specimens in the database into two

groups: (1) those with creatinine ≥ 2.0 (indicative of renal

insufficiency), and (2) those with creatinine < 2.0 (indicative

of normal renal function). This is a very rough division of

the population. A future full study will use diagnosis from

a standard estimate of glomerular filtration rate to identify

renal insufficiency. Having identified the samples belonging

to each group, the data were normalized to zero-mean and

unit-variance in each of the nine analyte values.

B. Outlier Detection

We evaluated two multivariate criteria functions applied

to the task of pre-screening samples to select those with high

probability of being faults, and so worth labeling. Our goal

was to capture a much higher percentage of faults than would

result from random sampling from the population (∼ 0.5%).

The first is the likelihood of the specimen’s measured analyte

values under the probability distribution of the full population

sample (containing individuals from both renal groups). This

criterion evaluates a sample based on its consistency with

the distribution of the general population. The second criteria

uses both a likelihood ratio and a likelihood. The ratio used is

the likelihood of the analyte values under the distribution for

low-creatinine samples divided by the probability of the ana-

lyte values under the distribution for high-creatinine samples.

This ratio compares a sample’s consistency with both the

high and low creatinine groups. (Although this has the flavor

of a Bayesian discriminant function, we are not attempting

to classify individuals into the two groups from their analyte

measurements, but rather identify measurements that appear

inconsistent with the actual known group membership.)

2Well-established methods for accommodating missing data values will
be applied in follow-on work.

2721



Fig. 1. A subset of the pairwise analyte scatter-plots. The 20 least-likely measurement vectors are indicated with a superimposed ∇. Confirmed errors
(from expert review) are marked in red.

1) Likelihood-Based Outlier Detection: We pooled the

data from all N = 3,524 specimens and constructed a model

probability density function pall(x) using a kernel density

estimate (KDE) [14][15]. The model density is

pall(x) =
1

N

N

∑
k=1

Gσ (x− xi) (1)

where xi is the vector of nine analyte measurements from

specimen i, and Gσ (z) is a zero mean, isotropic Gaussian

kernel with variance σ2. We determined the kernel width σ

by maximizing the jackknife estimate [15][16] of the average

log-likelihood

L(σ) =
1

N

N

∑
j=1

log

(

1

N −1

N

∑
i 6= j

Gσ (x j − xi)

)

. (2)

We used a Fibonacci line search to maximize L with respect

to σ .

We evaluated the likelihood of each of the specimens

xi under this model. (When evaluating equation (1) at one

of the dataset points x j, the term k = j is left out of the

sum, and the normalization factor N replaced by N − 1.)

We sorted the samples sorted by pall(x). The 20 lowest

likelihood specimens were selected as candidate faults, and

are indicated in scatter plots of the data shown in Figure 1.

The full 9×9 array of scatter-plots confirms the view of the

2×2 subset in Fig. 1 which shows that while obvious outliers

with respect to univariate and bivariate distributions are

captured by the likelihood criteria, a significant portion of the

outliers identified by the full multivariate distribution would

not have been detected by univariate or bi-variate analysis

because the measurements reside in mid-range intervals for

the analytes. Multivariate dependencies between the analyte

values are critical for locating faults.

One of us (S. Kazmierczak) reviewed the data, patient

charts, and instrument logs associated with the 20 candidate

faults in order to identify which were true errors. Six of the

20 candidates (marked red in Figure 1) were confirmed as

errors. None of these would have been detected by absurd

value checks or univariate outlier methods. (Bivariate checks

of BUN vs. calcium would identify some of them, depending

on threshold.) None of the errors would have been detected

by anion gap calculations. Out of the six confirmed errors,

two would have been caught by delta-check comparison with

the previous value. Three would have been caught by delta-

check after the subsequent specimen was taken several hours

later, and one had no previous or subsequent specimen for

comparison by delta-check. For the three errors caught by

delta-check after subsequent sample collection, a multivariate

statistical method would raise an alarm instantly, thus a new

specimen could have been ordered quickly.

2) Likelihood-Ratio-Based Outlier Detection: The second

approach used two multivariate probability density models

calculated on measurements of eight analytes (glucose, urea,

creatinine, sodium, potassium, calcium, albumin, and hemol-

ysis level). We constructed two model densities, pH(x) for

the high-creatinine (≥ 2) group, and pL(x) for the low-

creatinine (< 2) group. The models were estimated using

the KDE described above. The sample likelihood under each

model was computed, and the ratio l(x) ≡ pL(x)/pH(x)
formed. Specimens in the high-creatinine group with both
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high l(x) and high pL(x) values are inconsistent with the

bulk of the high-creatinine samples, and were selected as

potential laboratory errors. This can be viewed as simple

discriminant test using the pair of features (l(x), pL(x)).
The 19 error candidates (largely different from the first

set) thus determined were reviewed to identify which are

true errors. This investigation yielded seven confirmed errors

out of the 19 candidates. None of these errors would have

been detected by absurd value checks on single analytes,

and they would not have been detected by delta-check since

there was no available previous (or subsequent) data. Neither

would they have been found by anion gap calculations.
Some of the candidate samples were shown to be without

error by comparing the measured values with those from

previous and subsequent samples from the same patient

(but separated by too many hours to qualify for delta-

check analysis). This suggests that using patient-specific

measurement histories, or analyte trajectories over time will

be useful to reduce the false alarm rate.

III. DISCUSSION

Our results show that simple outlier detection techniques

using a kernel density estimate (KDE) are efficient at identi-

fying potential faults for labeling of laboratory test data. The

sensitivity demonstrated is vital for constructing a human-

labeled database with sufficient number of faulty samples.

The overall frequency of errors in clinical laboratory tests

is estimated in the review by Bonini et al. [12] (and the

references therein [4][11]) to fall in the range of 0.47-0.61%

of samples. Given that a database for discriminative training

will require hundreds of confirmed errors, the low prior for

errors in the population coupled with the high cost of expert

labeling precludes random sampling from the population for

labeling. (At 0.5% error rate and a target of 300 expert-

labeled faulty samples — to insure sufficient accuracy in

the measured sensitivity — drawing at random from the

population would require labeling 60,000 samples at a cost

of approximately $10 per sample.)
Thus selective pre-screening for faults is essential. We

have demonstrated that capability. The frequency of expert-

confirmed errors among the tests flagged by our statistical

criteria was 30-37%, or 50-79 times the overall error rate ex-

pected on the basis of Bonini’s review. Thus our multivariate

outlier detection is far more efficient than random sampling

for pre-screening laboratory tests for expert labeling.
In fact, the sensitivity of our methods are already far

better than the best current detection methods. Our simple

multivariate statistical methods identify errors that would not

have been identified by univariate absurd value checks (or

other univariate criteria), by anion gap calculations, or by

checks using quality control materials. Less than half of the

confirmed errors would have been caught by delta-checks;

and those that were may well have been ignored due to

the history of high false alarm rates associated with that

technique. Furthermore, those that could have been found

by delta-checks would have been identified and responded

to far more quickly with a statistical test.

Finally, this study used only very basic information (the

analyte tests) and simple algorithmic methods (outlier tag-

ging on unlabeled data) for modeling. A future full system

will integrate information from sample hemolysis (which

is predictive of erroneous excess serum potassium), pa-

tient demographics (age, race, and gender), and the facility

from which the samples were collected (e.g. intensive care

vs. hemo-dialysis). It will use detectors developed by dis-

criminative training, which one expects to increase sensitiv-

ity and specificity beyond that obtained with outlier methods.

Lastly, moving beyond static distributions to models incor-

porating patient measurement histories (i.e. trajectories in

the space of analyte values) will further enhance detection

performance [13]. The resulting detectors will improve pa-

tient care by reducing costs and patient risks associated with

laboratory test errors.
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