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Abstract - Acute Myocardial Infarction (AMI) remains a 

leading cause of mortality in the United States. Finding 

accurate and cost effective solutions for AMI diagnosis in 

Emergency Departments (ED) is vital. Consecutive, or serial, 

ECGs, taken minutes apart, have the potential to improve 

detection of AMI in patients presented to ED with symptoms of 

chest pain. By transforming the ECG into 3 dimensions (3D), 

computing 3D ECG markers, and processing marker 

variations, as extracted from serial ECG, more information can 

be gleaned about cardiac electrical activity. We aimed at 

improving AMI diagnostic accuracy relative to that of expert 

cardiologists. We utilized support vector machines in a 

multilayer network, optimized via a genetic algorithm search. 

We report a mean sensitivity of 86.82%±4.23% and specificity 

of 91.05%±2.10% on randomized subsets from a master set of 

201 patients. Serial ECG processing using the proposed 

algorithm shows promise in improving AMI diagnosis in 

Emergency Department settings. 

I. INTRODUCTION 

Acute Myocardial Infarction (AMI) remains a leading 

cause of mortality in the United States and worldwide. As 

such, finding accurate and cost effective solutions for AMI 

diagnosis at Emergency Departments (ED) is vital [1].While 

a valuable tool, 12-lead electrocardiograms (ECG) have high 

interpretative variability and relatively low diagnostic 

accuracy. On average, cardiologists exhibit 51% sensitivity 

and 91% specificity in AMI detection based on first 

collected ECG of ED patients complaining of chest pain [2]. 

Computer-aided analysis and smart, adaptive learning based 

approaches can improve diagnostic accuracy, which is 

important for improving health and patient care [3]. 

The effectiveness of the ECG can be augmented by 3-

dimensional (3D) vector analysis [4]. 3D ECGs provide 

additional information that may improve diagnostic accuracy 

[4] [5]. Along with a 3D approach, the use of information 

from consecutive or serial 12-lead ECG has been shown to 

increase sensitivity in the diagnosis of AMI [2]. While the 

aforementioned study concentrated on ST segment 

instability, we hypothesize that instability in other 3D ECG 

features, or markers, would indicate AMI. These 3D markers 

include angular, temporal, planarity, and ratio-metric 

parameters.  

To test the diagnostic capability of serial ECGs, we 

extracted 3D ECG markers from a set of 201 patients (pts) 

who had presented to an ED with symptoms of chest pain. 

The AMI or non-AMI clinical diagnosis, as provided by the 

ED final medical records, constituted our gold standard. The 

changes in 3D ECG markers, as extracted from serial ECGs,   

 

were processed using support vector machines (SVM), 

which have been shown to be powerful tools for diagnosing 

heart disease using features of ECG [3]. By constructing an 

optimal separating hyperplane using the maximum margin 

between data points of separate classes, the SVM provides a 

reliable binary classification in high dimensional feature 

space [3]. 

To optimize the training data and feature space, we 

utilized a genetic algorithm search, which is an evolutionary 

algorithm search that operates on the principles of 

Darwinian evolution [6]. In the present study, the 

classification error rate was minimized with respect to a 

known subset of patients.  

We present a multilayer of support vector machines 

with features, training data, and parameters optimized with 

genetic algorithms aimed at improved AMI detection 

accuracy. Our approach shows substantial sensitivity and 

specificity gains compared to cardiologists’ average 

diagnosis. 

II. MATERIALS AND METHODS 

A. SECG Data Acquisition and Feature Extraction 

A total of 201 pts, 65.25% male, 57.2 ± 13.2 years, 

experienced chest pain and presented to an urban ED (113 

pts) or to a catheterization laboratory (88 pts). Of these, 112 

pts had a final clinical diagnosis of AMI (52 STEMI, 60 

NSTEMI) and 89 pts had no AMI. STEMI stands for ST 

Elevated Myocardial Infarction, whereas NSTEMI stands for 

Non-ST Elevated Myocardial Infarction. The medical 

records obtained at discharge from either location were used 

to establish our AMI/non-AMI gold standard. Two ECGs 

were taken for each patient between 10 – 60 min apart, and 

were transformed to 3D ECGs [4]. The pair of ECGs shall 

be referred to as serial ECGs.  

The heart vector was computed by normalizing the 

weight of each of the leads from the 12-lead ECG. The 

normalization algorithm has been described before [4]. 

Briefly, the ECGs were converted into X, Y, Z components 

of the heart vector  ⃗⃗  using the inverse Dower matrix (ID) 

and the 12-lead voltage  ⃗ : 

                                    ⃗⃗      ⃗                                         (1) 

Individual attenuation factors    are calculated for each of 

the six precordial leads to minimize the least-squares 

difference between the actual and the derived ECG  
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waveforms, as calculated from the heart vector at that point. 

The normalized attenuation factor  is selected from the 

range of individual attenuation factors i. The time 

dependent voltage in any virtual leads can be written as:  

  ( )   ⃗⃗ ( )    ⃗⃗  ⃗     (              )        (2) 

where    ⃗⃗ ⃗⃗  ⃗ is the unit lead vector. 

Fig. 1 illustrates the concept of assigning equal weight 

to ECG leads to form a “virtual sphere” of normalized 

cardiac electrical activity. Based on the normalized heart 

vector, parameters were extracted as measured on the vector 

magnitude ECG and constituted our set of 3D ECG markers. 

Examples include QRS-T angles, planarity of QRS and T 

loops, directional changes in the ST vector, and ratio-metric 

markers, such as the relative change in the peak of the R 

wave with respect to the shift in the ST segment. Fig. 2 

illustrates the computation of the QRS-T angle marker. In 

patients with a normal ECG, the QRS and T loops are 

expected to be coplanar and this angle yields low values. 

Conversely, in AMI patients, particularly in STEMIs, the 

QRS and T loop reside in planes that form angles that 

typically exceed 45°. Consequently, the QRS-T angle 

marker is expected to display larger values. Percent changes 

in 3D ECG marker values across each patient’s serial ECG 

were also computed. Initially, a total of 227 3D ECG 

markers were extracted. 

 

 

 
 

 

 

 

B. Multilayered Support Vector Machine 

In the following section, let      denote a set of 

features to be classified into     . Let {(     )   
       } denote a set of   training examples [7]. 

 

Review 

In the case of linearly separable data, the SVM finds a 

linear decision function of the form:  

                                   (  )    ⃗⃗                                    (3) 

that yields  (  ⃗⃗⃗  )  ≥ 0 for    . and  (  ⃗⃗⃗  )  ≤ 0 for     . 

[7]. A simple case of this classification is shown in Fig. 3, in 

which a linear separation maximizes the margin between 

two classes. For a nonlinear separation, such as our case, the 

decision function is modified to 

                                   ( )    ⃗⃗   (  )                           (4) 

where  (  ) is a nonlinear operator to map    to some higher-

dimension space [7]. For the same conditions as the linear 

version, (4) provides a hyperplane that can separate 2 

classes. The parameters of the hyperplane can be found by 

minimizing the following cost function: 

                                 ( ⃗⃗   )  
 

 
‖ ⃗⃗ ‖    ∑    

 
              (5)   

subject to the following constraint: 

            ( ⃗⃗ 
  (  )   )                             (6)        

where   is a slack variable defining the relaxation of the 

separability in (4), and C is a regularization parameter [7]. 

 Minimizing the cost function in (5) can be done using 

the method of Lagrange multipliers. This produces the 

weight function with constants   :  

                                  ⃗⃗  ∑      (  ⃗⃗⃗  )
 
                            (7) 

The vectors   ⃗⃗⃗   are data for which the decision function is 

exactly ±1. These are called support vectors and represent 

the borderline examples from two classes. Plugging (7) into 

the decision function in (4) yields 

 ( )   ∑      
 (  ⃗⃗⃗  )

 
    (  )    

                ∑      (  ⃗⃗⃗     )
 
                                                (8) 

Figure 3. Basic Principle of Support Vector Machines. Two 

classes (black and clear dots) are separated linearly with the 

maximum amount of margin between them. 
Figure 1. Calculation of a “virtual sphere” of normalized 

cardiac electrical activity [5]. 

Figure 2: Calculation of QRS-T angle. 
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where  (  ⃗⃗⃗     ) is a kernel function that transforms the 

problem to a high dimensional feature space. The Gaussian 

radial basis function (RBF) is a common kernel that takes 

the following form 

                            (     )      ( 
‖    ⃗ ‖ 

   
)                         (9) 

The RBF kernel is maximum when     and has a width of 

 , which defines the smoothness of the decision boundary. 

The decision function in (8) then takes its maximum value 

when the input vectors    and support vectors   ⃗⃗⃗   are identical.  

Multilayer Network 

Support vector machines were used in a multilayer 

network to classify each patient as AMI/non-AMI based on 

computed features and changes in features. Fig. 4 shows a 

block diagram, in which preprocessing and the 1
st 

and 2
nd

 

layer SVM are shown. 

A radial basis function (RBF) kernel was chosen for all 

SVM with σ = 15 and C = 1. The 1
st
 layer SVM consisted of 

multiple SVM modules that simultaneously analyzed 

changes in 3D ECG markers from serial ECGs as well as the 

marker values from the patient’s first ECG. Each SVM in 

this layer was trained on a subset of the patient data. SVM 

1.1 was trained on serial ECG changes from subset A (30 

ED pts, 50% AMI). SVM 1.2 was trained on 3D ECG 

marker values  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from the subset A. SVM 1.3 was trained on 3D ECG marker 

values from subset B (30 catheterization lab pts, 50% AMI). 

SVM 1.4 was trained on SECG changes and 3D ECG 

marker values from subset C (30 combined pts, 50% 

NSTEMI, 50% non-NSTEMI) from all 201 pts. The training 

sets are summarized in Figure 5. 

The binary outputs of the 1
st
 layer became features for 

the 2
nd

 layer. The 2
nd

 layer consisted of a single SVM that 

integrated 1
st
 layer outputs with higher order 

characterizations of the patients to give a final classification 

of AMI or non-AMI. SVM 2.1 was trained on subset D (24 

combined pts, 50% AMI) based on the aforementioned 

features. In total, 70 patients were used for training due to 

the overlap between subsets A, B, C, and D. 

C. Genetic Algorithm Optimization 

Genetic algorithms are a set of evolutionary algorithms 

that operate on the principles of natural selection: mutation, 

selection, crossover, and reproduction [6]. A number of 

potential solutions to minimization problems are evaluated 

using a user defined fitness function. These solutions 

undergo the aforementioned principles and reproduce for 

new, fitter generations. The process repeats until the change 

in an error function ceases to exceed a specified value. 

The selection of features and training data were 

optimized so to minimize the error rate of specificity and 

sensitivity for the network. Features were reduced from 227 

to 60 as their fitness was determined from classification 

error using the generalized multi-layer SVM on all patients. 

A 227 length bit string was used for genetic algorithm, in 

which a 1 represented the inclusion of a feature, and a 0 

represented exclusion. The initial string included all features, 

and the algorithm iteratively modified the string until 

classification error was minimized. Following feature 

reduction, training patients were chosen by using the same 

fitness function with an additional constraint on the number 

of training patients to be less than 100. These patients 

constituted a training set for which the SVM could be most 

generalized. Along with patients, parameters such as σ and C  

 

Figure 4: Block Diagram of multi-layer SVM algorithm. 

Figure 5. Description of training sets for each SVM in 

MLSVM. The Venn diagram shows the overlap of the 4 training 

sets. The tables show the training set and marker types. 

SVM Set

1.1 A

1.2 A

1.3 B

1.4 C

2.1 D

SVM Marker Type

1.1 SECG

1.2 3D ECG

1.3 3D ECG

1.4 SECG + 3D ECG

2.1 Binary from Level 1

 

  

 

C. 30 pts 
mixed, 

50% 
NSTEMI B. 30 

CL pts 
50% 
AMI 

A. 30 
ED pts 
50% 
AMI D. 24 pts 

mixed, 
50% AMI 

Low 

High 

Figure 6: Block Diagram of optimization of parameters via 

GA. The red line shows where evolutionary selection from the 

GA search occurs. 
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TABLE I. DIAGNOSTIC ACCURACY 

 

 

 

 

 

 

were optimized to ensure the best decision boundary. The 

optimization process is depicted in Fig. 6. 

D. Testing 

The proposed algorithm was tested on all 201 pts, all 

non-train pts (131 pts), and 1000 random subsets of all 201 

pts consisting of the following: 20 STEMI, 20 NSTEMI, and 

60 Non-AMI pts. Additionally, blind testing was performed 

on a set of 12 pseudo-ischemia pts. These pts had been 

previously diagnosed with Benign Early Repolarization, a 

condition that displays ST segment elevation but no AMI. 

III. RESULTS 

Table I presents the mean, min, and max values for 

metrics computed on the randomized subsets as described in 

section II.D. Additionally, on all 201 pts, the proposed 

algorithm attained a sensitivity of 86.61%, a specificity of 

91.01%, a positive predictive value (PPV) of 92.38%, and a 

negative predictive value (NPV) of 84.38%.On the 131 non-

train pts, it attained a sensitivity of 85.71%, a specificity of 

88.33%, a PPV of 89.55%, and a NPV of 84.13%. 

On this data set, 2 expert cardiologists averaged 

55.29% sensitivity and 83.72% specificity in AMI detection 

based on first collected ECG. The cardiologists interpreted 

the ECGs according to their expert medical training. The 

mean performance of the proposed algorithm improved 

sensitivity by 31.53% and specificity by 7.33% [4]. Based 

on a McNemar's test, the sensitivity improvement was 

statistically significant (p < 0.05) [8]. Assuming 8% AMI 

prevalence in the general population presenting to 

Emergency Departments with symptoms of chest pain, our 

diagnostic numbers on the non-train pts would produce a 

PPV of 38.97% and NPV of 98.61% compared to 22.80% 

and 95.56% for expert cardiologists, respectively [9]. Our 

PPV improves that of cardiologists by 16.17%. Finally, 11 

out of 12 pseudo-ischemia pts were correctly classified as 

non AMI, for a specificity of 91.67%. 

IV. CONCLUSIONS 

The proposed algorithm performed strongly, as 

exhibited by the highly improved sensitivity and PPV as 

compared to cardiologists’ average. The stellar performance 

on various metrics demonstrates two points: the viability of 

using serial ECGs as classification features and the 

algorithm robustness as a diagnostic tool for AMI detection. 

The high performance on the blinded pseudo-ischemia set 

indicates that the algorithm is not fooled by ST segment 

instability in non-AMI patients. 

The combination of genetic algorithm optimized multi-

layer SVM and serial ECG analysis shows promise in 

improving diagnostic accuracy of AMI/non-AMI patients in 

Emergency Departments in a cost-effective manner. This 

observation is important because approximately 6 million 

patients present to U.S. EDs each year with chest pain [10]. 

Approximately 5.5 million of those patients do not have 

Acute Myocardial Infarction, but rather some other clinical 

condition, such as heartburn, gall stones, etc. [10]. Of them, 

about 26% have AMI ruled out by a first diagnostic triage in 

the ED, typically comprising at least a 12-lead ECG study 

and blood troponin levels (a biomarker for cardiac injury). 

The remaining 74%, or approximately 4 million, are kept 

around in the hospitals for cardiac additional testing, until it 

is subsequently discovered that most of these patients do not 

suffer from AMI. Based on the 8% AMI prevalence rate [9], 

out of the 4 million patients kept around for further testing, 

320,000 actually have AMI. It has been shown that each 30 

min of therapy delay can drastically reduce their probability 

of surviving AMI. Our 31.53% improvement in AMI 

detection sensitivity may results in timely delivery of life-

saving therapeutic interventions to about 100,000 of 

additional patients annually.  

We conclude that these preliminary results show 

sufficient promise for our proposed algorithm. Future 

randomized clinical studies will expand the training of the 

multilayer support vector machines and demonstrate 

performance in diverse test settings. 
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Metric Min Max

Sensitivity 86.82% +/- 4.23% 75.00% 100.00%

STEMI 90.47% +/- 5.08% 75.00% 100.00%

NSTEMI 83.18% +/- 7.01% 60.00% 100.00%

Specificity 91.05% +/- 2.10% 86.67% 98.33%

PPV 86.67% +/- 2.79% 80.00% 97.30%

NPV 91.27% +/- 2.58% 84.13% 100.00%

Mean +/- St. Dev
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