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Abstract— Advances in computer-aided diagnosis (CAD) sys-
tems have shown the benefits of using computer-based tech-
niques to obtain quantitative image measurements of the extent
of a particular disease. Such measurements provide more
accurate information that can be used to better study the
associations between anatomical changes and clinical findings.
Unfortunately, even with the use of quantitative image features,
the correlations between anatomical changes and clinical find-
ings are often not apparent and definite conclusions are difficult
to reach. This paper uses nonparametric exploration techniques
to demonstrate that even when the associations between two-
variables seems weak, advanced properties of the associations
can be studied and used to better understand the relationships
between individual measurements.

This paper uses quantitative imaging findings and clinical
measurements of 85 patients with pulmonary fibrosis to demon-
strate the advantages of non-linear dependency analysis. Results
show that even when the correlation coefficients between imag-
ing and clinical findings seem small, statistical measurements
such as the maximum asymmetry score (MAS) and maximum
edge value (MEV) can be used to better understand the hidden
associations between the variables.

I. INTRODUCTION

During the last decade, many CAD systems have been
adopted as clinical tools from which physicians and radi-
ologists can obtain quantitative information about the pro-
gression of a particular disease [1]. In chest CT, CAD
systems have been used to automatically identify and mea-
sure pulmonary infection such as influenza [2], pulmonary
fibrosis [3], Tree-in-Bud nodularity [4], and many other
diseases [1].

Although image analysis has proven to be crucial in the
detection and monitoring of numerous diseases and CAD
systems have shown to be effective at assisting radiologists
during the interpretation and decision-making process, in
general the associations between imaging and physiological
findings is still not well understood. The main challenge that
arises when correlating image and clinical findings is the
complexity and nonlinearity aspects of the relationship.

During the last two decades multiple techniques to analyze
the relationship between individual variables in large datasets
have been proposed. To a large extent, current data analysis
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Fig. 1. (left) Ground glass opacity is an ill-defined increase attenuation
of the lungs with preserved visibility of lung architecture. (right) Linear
opacity (arrow) can represent fibrotic scarring.

techniques often used in biomedical applications have not
kept abreast of these advanced and powerful approaches.
Some of the most popular techniques are mutual information
estimators [5], maximal correlations [7], principal curve-
based methods [6], distance correlation [8], and more re-
cently maximal information coefficient (MIC) [9].

We hypothesize that in many cases there are relevant
associations between imaging patterns and clinical findings,
however the analysis must go beyond linear correlations
techniques.

To explore and better understand the non-linearity prop-
erties between imaging and clinical data, a dataset of 85
patients with pulmonary fibrosis was used from protocols
approved by the Institutional Review Board of the National
Heart, Lung and Blood Institute (ClinicalTrials.gov iden-
tifiers NCT00023296, NCT00081523, or NCT00352430).
First, a computer-based application was designed to identify
and quantify ground glass opacities (GGO) and linear inter-
stitial (fibrosis). GGO is an ill-defined increased attenuation
of the lungs caused by different lung diseases as illustrated in
Figure 1(left). Linear opacity is illustrated in Fig. 1(right).
The first step of our research was to design and develop
a texture-based CAD system to quantitatively recognize
pulmonary CT features [2].

In addition to the chest CT studies, each patient also had
a pulmonary function test (PFT) done to obtain different
physiological measurements of the lungs. PFT is used to
measure airflow and the volume of air the lungs take and
release during inhalation and exhalation.

There are still no clear understandings of the associations
between clinical measurements such as PFT values and
patterns observed by radiologists in imaging studies. The
major limitation has been the weak correlation that is often
found when comparing individual variables.
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This paper presents how nonparametric techniques can be
used to explore the non-linearity properties of the data and to
estimate additional statistical measurements for determining
the relevance of different clinical features.

II. BACKGROUND

The relationship between two random variables xi and xj
can be explored by estimating the correlation and dependen-
cies between them. Linear correlations including the Pearson
product-moment correlation and regression have been the
most widely accepted techniques to study the associations
between individual clinical variables [10].

The continuing interest in effective ways for findings asso-
ciations between a pair of variables have motivated the design
and implementation of other correlation models such as
mutual information estimators [5], maximal correlations [7],
principal curve-based methods [6], and distance correla-
tion [8]. Recently a new maximal information-based heuristic
technique was introduced named the Maximal Information
Coefficient (MIC) [9].

A. Maximal Information Coefficient (MIC)

MIC is a novel measure of dependence that captures linear
and non-linear associations between pair of variables. MIC
basically constructs a grid with various sizes and finds the
largest mutual information obtained from the pairwise data.
Nevertheless, MIC is not an estimate of mutual information,
but a rank order statistic helping to understand the underlying
complexity of the data. As I denotes the mutual information
and G denotes the particular grid, MIC of a set D of pairwise
data with a sample size n and grid size less than B(n) is
given by

MIC(D) = maxxy<B(n){M(D)x,y} (1)

where
M(D)x,y =

I∗(D,x, y)

log min(x, y)
, (2)

and I∗(D,x, y) = max I(D|G) for different distributions
of grids G such that B(n) is the maximal grid size and for
practical reasons it is set to n0.6 (see [9] supplementary notes
for details).

MIC has three key properties that were used to explore
the non-linear properties of the data and to develop a feature
selection procedure. These features are maximum asymmetry
score (MAS), maximum edge value (MEV), and minimum
cell number (MCN). The following subsections, we briefly
describe these properties and their use in the proposed
feature selection framework.

Maximum Asymmetry Score: MAS is a measure of non-
monotonicity. Monotonic functions are those functions that
follow a particular order, thus monotonic properties are very
useful for differentiating individual functions. In general,
non-monotonicity is not a desirable property due to lack of
consistency in the functional analysis. MAS, in the context
of MIC computation, is a measure of non-monotonicity
that basically captures the deviation of a function from

monotonicity. Based on all these definitions, MAS can be
recalled as non-consistency as well. In short, the low values
of MAS indicate differentiable, consistent, and well-posed
relationship among the data. By following Reshef et al [9],
MAS can be defined as

MAS(D) = maxxy<B |M(D)x,y −M(D)y,x| (3)

where M(D) is characteristic matrix of a set D of pairwise
variable data.

Maximum Edge Value (MEV): MEV is defined as a
closeness to being a function and measures the degree to
which the dataset appears to be sampled from a continuous
function [9]. For a given set D, it is defined as

MEV (D) = maxxy<B{M(D)x,y : x or y = 2} (4)

MEV is ranged from 0 to 1 such that the large values of
MEV indicate well behaved functions.

Minimum Cell Number (MCN): MCN is known as com-
plexity measure which simply counts the number of cells re-
quired to reach the MIC score. While well-defined and mono-
tone functions require less number of cells, non-monotone
and parametrically poorly defined functions require large
number of cells to reach MIC. MCN can be defined simply
as

MCN(D, ε) = minxy<Blog(xy) (5)

where M(D)x,y ≥ (1 − ε)MIC(D) and ε is a robustness
term and depends on the MIC such that for noiseless case ε
is considered to be 0.

III. APPROACH

In this paper we postulate that the correlation measurement
between two variables must be jointly considered with other
properties of the data in order to effectively determine
the associations between imaging and clinical findings. In
particular, correlation measurements and advanced statistical
properties of the data such as the MAS to determine the
monotonicity of the data, the MEV to understand the close-
ness to a function, and MCN to know the complexity of
the function must be combined and used to determine the
relevance of the associations.

One specific advantage of using advanced statistical prop-
erties of the data is to better understand the meaning of the
weak correlations as those often seen between imaging and
clinical findings. In addition, the combination of multiple
advanced statistical properties can be used to create a more
elaborated feature selection technique that jointly consider
multiple statistical aspects of the data.

A. Feature Selection Based on MIC and Its Key Properties

We propose to use MIC and its key properties as a
feature selection algorithm in order to explore non-linear
associations among clinical and imaging findings where
conventional linear correlation analysis falls short. Since
MIC and MEV are proportional, and MAS and MCN are
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inversely proportional to the pairwise relationship of data as
described in previous section, we create a novel metric by
combining the MIC and its key features as

θi =
∏
i

rMIC
i

rMEV
i

(rMAS
i rMCN

i )
(6)

where i represents particular pairwise relationship (i.e., PFT
versus GGO).

Data MIC MAS MEV MCN θ
Linear plot 1 0 1 2 inf

Parabola 1 0.69 1 2.56 0.56
Two Lines 0.79 0.16 0.70 6.91 0.50

Circular 0.71 0.03 0.32 6.87 1.06
Circular + Noise 0.46 0.19 0.22 6.98 0.07

TABLE I
MAXIMAL INFORMATION COEFFICIENT (MIC) AND SOME OF ITS

ADVANCED NON-LINEAR STATISTICAL PROPERTIES WERE ESTIMATED

FOR A SET OF SYNTHETIC FUNCTIONS TO BETTER UNDERSTAND

COMPLEX ASSOCIATIONS IN CLINICAL DATA.

Table I shows a set of well defined functions with their
corresponding MIC, MAS, MEV, MCN, and θ properties.
From the table we can see that linearly correlated data will
have high MIC and MEV values. Some of the advantage of
using nonparametric exploration techniques is that even the
associations in non-linear functions such as a parabola or a
circle can be captured. By using the MIC, the key properties
of MIC, and θ, we can approximate the association between
two random variables to a given function as shown Table I.

IV. RESULTS

To show the limitations of linear correlation techniques
when analyzing the associations between image and clinical
variables, linear regression was used to obtain the correlation
coefficients R and R2 between abnormal imaging patterns
of CT (GGO and fibrosis) against clinical measurements ob-
tained from the PFT test. Table II shows some of the results
when applying linear correlation to analyze the associations
between GGO and Fibrosis with PFT. From the results we
can see that the most significant correlation when considering
GGO obtained an R value of 0.394 and an R2 value of
0.155. The results show that there is a weak, but significant
correlation between the amount of GGO and the Expiratory
Reserve Volume (ERV). A similar correlation appears when
analyzing fibrosis.

Only the Expiratory Reserve Volume (ERV), timed forced
expiratory volumes (FEV1), total lung capacity (TLC), and
the vital capacity (VC) were weakly correlated with GGO
and linear opacity (fibrosis). Table II also shows that similar
correlations were found when analyzing the associations
between PFT parameters and fibrosis. However, from the
results we can see that in general PFT parameters are
correlated more closely with GGO than with fibrosis.

When analyzing the top PFT variables in Table II using
the advanced non-linear properties of the data, we can better
understand the type of associations that exist between PFT

Ground Glass Opacity (GGO) Fibrosis
Name R R2 R R2

ERV 0.394 0.155 0.347 0.120
FEV1 0.330 0.109 0.314 0.099
TLC 0.311 0.097 0.239 0.057
VC 0.322 0.104 0.329 0.108

FVC 0.282 0.080 0.298 0.089
FRC 0.228 0.052 0.143 0.020
RV 0.218 0.048 0.082 0.007
IC 0.118 0.014 0.171 0.029

TABLE II
TABLE WITH SAMPLE ASSOCIATIONS BETWEEN PTF AND IMAGING

FEATURES.

Fig. 2. Analysis of the associations between PFT and imaging features such
as GGO and Fibrosis. For each clinical measurement under consideration,
the MIC, MAS, MEV properties of the data were estimated.

and imaging findings. Figure 2(top) shows that the MIC
values of the first four variables range from 0.240 to 0.312.
That shows that the association between the data does not
follow a particular linear pattern, instead a more circular or
torus-type of relationship as demonstrated by the synthetic
results shown in Table I. This is, some data points reside
inside the circles, some around the circumference of the
circle, and some outside the shape.

Furthermore, when we analyze the monotonicity of the
associations, we can see that most of them are between 0.039
and 0.152. This is a very important finding because it means
that the relationships between PFT and imaging findings
follow a particular order. The monotonicity pattern means

2702



that as the amount of GGO increases or decreases, there is
a clear pattern that the data points get closer or farther away
from the center of the circle. Finally, when we analyze the
MEV results we can see that the values range between 0.240
and 0.312. By looking at Table I, we can infer that there is
a non-linear circular function that can be used to capture
the associations between those PFT parameters and imaging
features. Similar results can be found when comparing PFT
measures against the volume of fibrosis as illustrated in Fig.
2 (bottom).

We found that only the ERV, FEV1, TLC, and VC were
found to be weakly correlated with GGO and fibrosis. Similar
correlations were found when analyzing the associations
between PFT and fibrosis. However, in general it seems that
PFT is more correlated with GGO than with fibrosis.

Ground Glass Opacities (GGO)
Name Relevance
TLC 0.497
FVC 0.363
ERV 0.281
RV 0.248

FRC 0.228
VC 0.172

FEV1 0.132
IC 0.118

TABLE III
TABLE SHOWING THE RANKING OF THE PFT FEATURES WHEN USING

OUR FEATURE SELECTION TECHNIQUE.

By using our features selection technique explained in
Section III, we can determine the relevance of a set of given
clinical measurements. When testing our feature selection
technique with PTF, we found that the relevance of the
measurements slightly changed more into accordance with
what is expected from the physiological point of view. For
instance, the total lung capacity (TLC) might be expected to
be more highly correlated with the volume of air a patient
can inhale and exhale. Thus, demonstrating and taking into
account the non-linear properties of the data in conjunction
with correlation properties opens new ways to look at the
associations between multi-modal clinical data. Table III
shows some of the results when using our feature selection
technique. Note that any reliable relevance can be encoded
as a functional form (i.e., high MEV values) which can give
insights into determining unique ordered pairs, eventually
leading to bio-marker identification.

V. DISCUSSION AND CONCLUSION

It is proved that MIC is more powerful when data is
noiseless (MEV is high and/or MAS is low), however, is
still not addressed how to deal with complex data including
certain amount of noise (i.e., due to measurement errors,
sensitive clinical variables, etc). To cope with this statistical
power problem of MIC, we are aiming to bring into attention
flexible grids which allows the use of various size and
shape parameter to encapsulate noisy relationships better.
Furthermore, in order to solve this issue, an information

fusion system can be adapted by taking into account the rank
of statistical powers of various different approaches (such as
distance correlation) other than MIC.

In our implementation of feature selection based on MIC
and its key features, we assumed that the importance of
each key feature contributed equally to the construction of
θ. Indeed, depending on the nature of the problem, certain
weights can be approximated to feature selection as

θnewi =
∏
i

(rMIC
i )α

(rMEV
i )β

(rMAS
i )γ(rMCN

i )ω
(7)

such that α + β + γ + ω = 1. However, this is outside the
scope of current paper and will be evaluated separately as
an extension of the current formulation.

In this study, we analyzed the relationships of the clinical
and imaging variables based on novel data association mea-
sures. Based on this, we developed a simple yet efficient
feature selection system to build a bridge from system
biology to medical imaging. We demonstrated that finding
the relationships between spaces spanned by clinical and
imaging variables are beyond the horizons of simple linear
correlations, and more sophisticated methods are needed to
ensure that the complexity of the relationship is handled.
As an extension of this work, we aim to build a reliable
probabilistic decision mechanism based on the proposed
feature selection algorithm together with a near-optimal clas-
sification algorithm to predict possible bio-markers for the
particular imaging abnormalities pertaining to lung diseases.
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