
 

 

 

  

Abstract — Multi-modal fusion is an effective approach in 
biomedical imaging which combines multiple data types in a 
joint analysis and overcomes the problem that each modality 
provides a limited view of the brain. In this paper, we propose 
an exploratory fusion model, we term “mCCA+jICA”, by 
combining two multivariate approaches: multi-set canonical 
correlation analysis (mCCA) and joint independent component 
analysis (jICA). This model can freely combine multiple, 
disparate data sets and explore their joint information in an 
accurate and effective manner, so that high decomposition 
accuracy and valid modal links can be achieved 
simultaneously. We compared mCCA+jICA with its 
alternatives in simulation and applied it to real fMRI-DTI-
methylation data fusion, to identify brain abnormalities in 
schizophrenia. The results replicate previous reports and add 
to our understanding of the neural correlates of schizophrenia, 
and suggest more generally a promising approach to identify 
potential brain illness biomarkers.   

I. INTRODUCTION 

Recently, collecting multiple types of data from the same 
individual using various techniques including MRI, DTI, 
EEG and genotyping etc., has become common practice. 
Each brain imaging technique provides a different view of 
brain function or structure, while genetic variation data can 
inform on human  risk and treatment response. It is 
increasing clear that multimodal fusion may reveal hidden 
relationships and unify disparate neuroimaging findings [1]. 
For example, combining genetic and fMRI data achieves 
better classification accuracy than using either alone, 
indicating that genetic and brain function represent different, 
but partially complementary aspects[2]. Therefore, 
examination of cross-information among data types may 
uncover potentially important variations which are only 
partially detected by each modality. 

Existing multivariate fusion methods have different 
optimization priorities and limitations: Some enable common 
as well as distinct levels of connection among modalities, 
such as multi-set canonical correlation analysis (mCCA)[3] 
and partial least squares (PLS)[4, 5] approaches, but their 
separated sources may not be sufficiently spatially sparse 
(e.g., the brain maps of several components may look similar 
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 when the correlation coefficients of the canonical variables 
are insufficiently distinct). Some do well in spatial 
decomposition, such as joint ICA (jICA)[1] and linked ICA[6], 
but only allow a common mixing matrix. We aim to solve the 
above issues by proposing a model that enables both flexible 
linkages and high decomposition accuracy for multiple brain 
imaging and genetic data sets, such a fusion strategy is 
shown in Figure 1. This exploratory model will be compared 
qualitatively with its alternatives: jICA and mCCA. 

II. METHOD 

We assume that the multimodal dataset Xk, is a linear 
mixture of Mk sources given by Sk, mixed with a nonsingular 
mixing matrix Ak for each, k denotes modality. 

  k k k=X A S           k = 1, 2,..n             (1) 
where Xk is a subjects-by-voxels feature matrix (we use 
voxels for our description but these could also be, e.g., time 
points or genes). The sources Sk, are distinct within each 
dataset, while the columns of iA  and jA  have higher 

correlation only on their corresponding indices, , {1,2... }i j n∈  
i j≠  are modality number. Given that there are N subjects, 
typically, the number of voxels L  in kX  is much larger 
than N. Due to the high dimensionality and high noise levels 
in the brain imaging data, order selection is critical to avoid 
over fitting the data. Using the improved minimum 
description length(MDL) criterion as in[7], the number of 
independent components kM  are estimated for each 
modality and we set the final component number for joint 
ICA as 1 2max( , ... )nM M M M= . 

Dimension reduction is then performed on kX  using 
singular value decomposition, a scheme where small 
singular values of the matrix are treated as noise/redundancy 
are discarded, given    

k k k=Y X E             1, 2..k n=          (2) 
where kY  is in size of N M×  and kE contains eigenvectors 
corresponding to significant (higher) eigenvalues. 
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Multi-set CCA[8] is thus performed on Yk, generating the 
canonical variants (CV) T T

k k k=D w Y  by maximizing the 
sum of squares of all correlation values in the corresponding 
columns of Dk so that  

{ }T
k kE =D D I  ; 1 2{ } ( , ... )T M

i j ij ij ijE diag r r r≈D D           (3) 
where , , {1, 2... }, k i j n i j∈ ≠ . Based on the linear mixture 
model, we simultaneously obtain the associated components 
Ck via Xk=Dk Ck. However, the performance of mCCA for 
blind source separation (BSS) may suffer when 

1 2, ... M
ij ij ijr r r are very close in values, which might occur in 

applications using real brain data, since the multimodal 
connections among components usually are not high and 
could be similar in value[9] . Therefore, Ck will typically be a 
set of sources that do not completely independent. 

Joint ICA is then implemented on the concatenated 
maps[C1,C2…Cn], to maximize independence among joint 
components by reducing their second and higher order 
statistical dependencies, as in equation (4). ICA as a central 
tool for BSS has been studied extensively and we utilized 
Infomax[10] in our work due to its high stability. 

                , .. , ..n n⋅1 2 1 2[S S S ] = W [C C C ]               (4) 

Finally, n sets of independent components kS  are 
extracted (n=3 in our case), with their corresponding mixing 
matrices kA  linked via correlation. The proposed scheme 
“mCCA+jICA” can be summarized as shown in Figure 1. 

( ) ,    k k k k k= ⋅ ⋅ ⋅-1 -1X D W S A = D W           (5) 

III. SIMULATION  

       We next investigate the joint BSS performance of 
mCCA+jICA on simulated data and compare it to that of 
joint ICA and mCCA. 3 modalities with different data 
length were simulated; each included 8 sources, resulting in 
true sources S1 (in size of 8×65536), S2 (in size of 8×2000) 
and S3(in size of 8*10000). The mixing matrices of each 
modality: A1, A2 and A3 (in size of 100×8), had diverse 
correlations between their corresponding columns, as the 
true connection shown in Figure 2(c). 100 noisy mixed 
images were generated for each modality under each of the 
11 noisy conditions via k k k k k k= + = +X I N A S N , k=1,2,3; 
where Ik is pure signal mixture and kN  is random Gaussian 
noise. The corresponding mean peak signal-to-noise ratios 
(PSNR) are in range of [-1 20] dB. Typical PSNR value for 
the acceptable image quality is about 30 dB; the lower the 
value, the more degraded the image[11]. Three joint BSS 
models: jICA, mCCA and mCCA+jICA were implemented 
on Xk respectively under every PSNR for 10 runs. The 
decomposed components were paired with the true sources 
via cross-correlation automatically within each feature. We 
adopted 3 metrics to estimate the joint BSS performance: 
1) Estimation accuracy of sources Sk; 
2) Estimation accuracy of mixing matrices Ak 
3) Mean square error of the modal links (Ai-Aj correlation) 

compared to ground truth.  

       
Figure 2 compared the first two performance metrics in 
different noisy conditions (a) and source distributions (b). It 
is evident that mCCA+jICA was quite robust to noise, and 
its BSS performance was consistently the best in all noise 
conditions. Consequently, joint ICA was the second best in 
source estimation and mCCA was the second best in mixing 
matrix estimation;  Note that when PSNR=-1dB, i.e., noise 
is bigger than signal, all three methods can still have the 
estimation accuracy higher than 0.5.  
        Figure 2(c) compared the modal-connection estimation, 
where the true A1-A2, A1-A3 and A2-A3 correlations were 
given by yellow bars for every source, while the mean 
square errors and the standard derivations of the link 
estimation were plotted in red for mCCA and in green for 
mCCA+jICA. Note that both high (0.79) and low (0.07) 
correlation values exist in modal connections, representing 
shared or distinct factors among modalities. mCCA+jICA 
again overperformed mCCA, especially for sources whose 
have low Ai-Aj correlation values that are close to many 
others, e.g. the A1-A2 and A1-A3 correlation of source 6. 
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IV. REAL HUMAN DATA 

Next, mCCA+jICA was applied to real DTI, fMRI 
(auditory sensorimotor [SM] task[12]) and methylation data 
collected from 80 healthy controls (HC) and 62 patients 
with schizophrenia (SZ) derived from four sites of the 
MIND Clinical Imaging Consortium (MCIC) study. Table 1 
lists the demographic information for all subjects. WRAT 
III is a very brief screening measure for achievement. 

 Table 1. Subject Demographic Information . 
  Number (sex) Age WRAT III Ethnicity
HC 80 (29 female) 32.4±11.1 51±4.2 66 white  
SZ 62 (16 female) 33.5±10.8 46±6.8 49 white 
p value 0.45 0.55 5e-7 0.55 
Our goal was to identify the aberrant brain regions or 

genetic features in schizophrenia and to examine whether 
these factors share connections among brain function, 
structure and genetic methylation. Based on the theory 
described in the Methods section, M=11 was estimated as 
the model order.  

A. Preprocessing 

FMRI data were preprocessed using SPM5 software 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/), resulting 
in 53×63×46 voxels. A GLM analysis consisted of a 
univariate multiple regression of each voxel's time course 
with an experimental design matrix was used to find task-
associated brain regions. We utilized the subtraction of 
tapping beta-weight map with experimental baseline to 
represent the tapping effect for the SM task.   

DTI data were preprocessed by FMRIB Software Library 
(FSL; www.fmrib.ox.ac.uk/fsl) consists of the following 
steps: 1) Quality check 2) Motion and eddy current 
correction 3) Adjusting diffusion gradient direction and 4) 
Feature extraction, to calculate the diffusion tensor and 
fractional anisotropy (FA) maps, which were then smoothed 
and resized to a final 53×63×46 matrix for each subject. 

The raw methylation data have 27.5K locus in which the 
measurement error was first corrected by selecting locus that 
only has standard derivation >0.05, thus reducing the 
effective length to 1266 locus (contain 1108 unique genes). 
Then the gender effect was corrected using principal 
component analysis (PCA) by removing the PCs that show 
strong correction with sex. 

After feature extraction, the 3D brain image of each 
subject was reshaped into a one-dimensional non-zero 
vector and stacked one by one, forming a matrix with 
dimensions of 142×[number of voxels] for fMRI or DTI. 
The site effect was corrected by making the mean of data 
from 4 sites equal. The methylation data matrix (142×1266) 
had no significant site effect, but a strong batch effect that 
was also corrected by making the mean of data from all 
batches equal. Then 3 feature matrices were normalized to 
have the same average sum-of-squares (computed across all 
subjects and all voxels/loci for each modality). The 
normalization was needed because all modalities had 
different ranges. Thus, following normalization, the relative 
scaling (a normalization factor) within a given data type was 

preserved, but the units between data types were the same 
(in a least-squares sense). After normalization, the data were 
processed via the pipeline shown in Figure 1, i.e., dimension 
reduction-> mCCA-> jICA-> component analysis. Note that 
the mCCA+jICA approach does not increase the 
computational load appreciably. It only cost minutes to 
analyze hundreds of subjects, however it integrates merits of 
both joint ICA and multi-set CCA. 

B. Results of Group Differences  

    Two sample t-tests were performed for fMRI and DTI on 
its mixing coefficients between controls and schizophrenia.  
As methylation data are strongly affected by aging and may 
be affected by race, we employed an ANOVA of 3 factors 
(group, age and race) on the methylation loading parameters 
and selected those components with significant group 
effects. Results are shown in Figure 3, with p values 
displayed within the component plots. The reported p values 
surviving false discovery rate correction for multiple 
comparisons are shown in red. One joint component (IC 1) 
and three modality-specific components(DTI_IC7, DTI_IC9 
and Methl_IC2) were identified as group-discriminating 
ICs, thus our method showed more flexibilities than joint 
ICA in detecting group differences in loadings. 
       FMRI_IC1 depicts a set of well known regions 
previously implicated in schizophrenia during a SM task, 
including superior temporal gyrus (STG) and motor cortex, 
consistent with the fact that this is an auditory task requiring 
subjects to push buttons. STG plays a prominent role in 
schizophrenia, e.g. It has been identified as the most group-
discriminating region for controls versus schizophrenia 
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patients in auditory tasks such as the sensorimotor 
paradigm[13] and its dysfunction has been related to the 
auditory hallucinations that are common in schizophrenia 
[14].In addition, motor activation deficits in schizophrenia are 
frequently detected  in fMRI studies[15].  
      DTI_IC1 identified large regions in the cortico-spinal 
tract (CST) and superior longitudinal fasciculus (SLF), 
especially SLFt (the parts of SLF from temporal lobe), 
which originate from the caudal STG, pass along with the 
SLF bundle and terminate in the prefrontal cortex. This 
suggests that the “linked” (joint) brain components 
correspond to FA changes in known tracts and functional 
changes in distant regions connected to those tracts. 
      DTI_IC 7 and DTI_IC 9 detect other discriminative 
regions in tracts of anterior thalamic radiation (ATR) and 
inferior fronto-occipital fasciculus (IFO). This finding was 
consistent with several reports of DTI abnormalities in SZ 
[16], suggesting that disruptions in white matter connectivity 
may contribute to coordinated brain dysfunction, especially 
in the frontal lobe, which frequently is  thought of as 
“disconnected” from other brain regions in schizophrenia[17]. 
      For methylation data, one gene in the same location of 
IC1 and IC2 had the highest Z score, that is, GNAS (G 
protein alpha subunit) located at 20q13.3. Programmed cell 
death and alterations in intracellular G-protein signaling 
may be involved in the pathophysiology of schizophrenia. 
The G-alpha subunit of heterotrimeric G-proteins, encoded 
by the gene GNAS, may play a role in both of these 
processes[18] and was associated with schizophrenia in an 
Italian population sample[19], suggesting an underlying 
association between the methylation factor and the brain. 

V. CONCLUSION 
A chief purpose of multimodal fusion is to access the 

joint information provided by different data types, which in 
turn can be useful for identifying dysfunctional processes 
implicated in brain disorders. In this paper, we extended our 
previous two-way “mCCA+jICA” model[9] to multi-way 
fusion, which in simulation was verified as able to achieve 
higher decomposition accuracy and to identify valid links 
between modalities. In a real-world fusion application, we 
highlighted data from brain function, structure and genetics. 
We identified both modal-common and modal-specific 
group-discriminating aspects that verified the abnormalities 
in schizophrenia and replicated previous findings. Such 
observations add to our understanding of the neural 
correlates of schizophrenia. The proposed model promises a 
widespread utilization in the neuroimaging community and 
may be used to identify potential brain illness biomarkers.  
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