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Abstract— Many neurological disorders can change patterns 

of brain activity observed in functional imaging studies. These 

functional differences may be useful for classification of 

individuals into diagnostic categories. However, due to the high 

dimensionality of the input feature space and small set of 

subjects that are usually available, classification based on fMRI 

data is not trivial. Here, we evaluate the use of a Sparse 

Representation Analysis method within a Fisher Linear 

Discriminant (FLD) classification method, taking functional 

patterns characteristic of different cognitive tasks as the data 

input. As a test dataset, with a clear ‘gold-standard’ 

classification, we attempt to classify individuals as young, or 

older, based only on functional activation patterns in a speech 

listening task. Thirty two young (age: 19-26) and older (age: 57-

73) adults (16 each) were scanned while listening to noise and to 

sentences degraded with noise, half of which contained 

meaningful context that could be used to enhance intelligibility. 

Different functional contrast images were used within K-SVD 

to generate basis activation sources and their corresponding 

sparse modulation profiles. Sparse modulation profiles were 

used in a FLD framework to classify individuals into the young 

and older categories. The results demonstrate the feasibility of 

the general approach, and confirm the potential applicability of 

the proposed method for real-world diagnostic problems.  

I. INTRODUCTION 

In the past two decades, functional resonance imaging 
(fMRI), has become a very popular way to study the ‘brain at 
work’, due in large part to its relatively good spatial 
resolution and its non-invasiveness. In fMRI studies, 
regional changes in blood-oxygen-level-dependent (BOLD) 
signal index how the brain is organized to perform particular 
cognitive tasks, and this can be compared between two 
groups, such as patients and normal controls [1]. Usually 
evoked activities between different cognitive conditions are 
compared [2, 3]. Marked variability within groups can make 
it difficult to determine whether groups differ reliably with 
respect to the localization and extent of the activation. 
Independent Component Analysis (ICA) is another method 
that has been used to make inferences about group-specific 
patterns of activity in recent years [4-6]. Unlike conventional 
analysis, ICA is a multivariate approach that uses high order 
statistics (independence) to find spatial patterns.  
Independence is a valid assumption in fMRI analysis, 
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because the spatial networks of activations are typically 
known to be non-overlapping [7]. However, the theoretical 
assumption of independence of the patterns extracted by ICA 
algorithms is not guaranteed in practice. Daubechies et al. 
showed that using ICA algorithms, components are separated 
on the basis of spatial sparsity; therefore, other mathematical 
properties of brain fMRI data than independence should be 
used [8]. Sparsity is a natural characteristic satisfied by fMRI 
sources in the spatial domain [7]. K-Singular Value 
Decomposition (K-SVD) is a dictionary learning algorithm 
for sparse signal representation [9]. K-SVD can be used to 
represent large set of functional contrasts as sparse linear 
combination of small set of brain ‘basis patterns’. K-SVD is 
the generalized k-means clustering process which iteratively 
updates basis patterns and sparse coding coefficients to 
better fit the data. 

In the present study, we test potential application of K-
SVD as a second-level analysis of an fMRI dataset involving 
young and older neurologically normal individuals. Here, we 
compare performance by young and older listeners on a 
speech comprehension task [10, 11]. Three functional 
contrasts are used. The first contrast compares responses to 
auditory stimuli (unintelligible noise) with silence. The 
second contrast compares response to sentences without a 
coherent meaning (e.g., “Her good slope was done in 
carrot”) with the unintelligible noise. The third contrast 
compares responses to sentences with a coherent meaning 
(e.g., “Her new skirt was made of denim”) and those without 
a coherent meaning. We use the sparse coefficients, which 
reflect group differences between functional contrast 
activation patterns, to automatically classify individuals as 
younger or older. Using these lower dimension coefficients, 
we overcome the problems of high dimensionality of the 
input feature space, and the small set of subjects that are 
usually available in classification based on fMRI data. 

To the best of our knowledge, this is the first report of 
sparse representation of brain cognitive patterns to classify 
individuals. While we use young and old adults as a testbed 
to demonstrate the potential of the proposed sparse analysis 
approach to classify groups of subjects based on functional 
contrasts; the high classification accuracy confirms the 
potential applicability of the proposed method to 
neurological diagnostic disorders. 

II. MATERIALS 

A. Participants 

Sixteen young (mean age: 21.1, range: 19-26, 11 female) 
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and sixteen older (mean age: 64.2, range: 57-73, 11 female) 
adults were scanned. All subjects were native speakers of 
English, without any history of neurological illness, head 
injury, or hearing impairment. This study was cleared by the 
Queen's University Health Sciences Research Ethics Board, 
and written informed consent was obtained from all 
participants.
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B. Context Study 

Subjects were asked to listen to sentences in the scanner 
and repeat what they were able to understand for half of the 
sentences. High-context and low-context sentences taken 
from those used by Davis et al. [10], were mixed with noise 
having the same long-term spectrum as the speech, and the 
same amplitude envelope of the utterance to be masked 
(Signal-Correlated Noise: SCN; [12]) at different Signal to 
Noise Ratios (SNRs): -5 dB, -3.5 dB, -2.5 dB, -1 dB, 0 dB, 
2.5 dB. SCN on its own, silence, and clear high- and low-
context sentences (without noise) were also tested. 
Behavioral performance was measured as the proportion of 
words correctly reported at each SNR. Sentence materials 
were designed such that comprehension was determined by 
the quality of the signal (“low context”) or by quality of the 
signal, together with semantic knowledge (“high context”). 
Once deficits in hearing were controlled, the context benefit 
in older people was approximately as large as that in younger 
people [13]. Here, we hypothesize that, despite behavioral 
similarity, young and older subjects may be classifiable 
based only on the patterns of activity observed in functional 
contrast images. In this analysis, we do not consider 
information related to structural (anatomical) differences 
between the two groups. 

C. Data Acquisition 

The fMRI data were acquired using a 3.0 Tesla Siemens 
Trio MRI scanner with a 12-channel head coil in the MRI 
facility at Queen's University, Kingston, Canada. Each 
acquisition consisted of 32 contiguous slices with 4 mm 
thickness, field of view 211×211 mm, in-plane resolution of 
3.3×3.3 mm. The repetition time (TR) was set to 9 sec and 
the acquisition time was 2 sec. This sparse GE-EPI imaging 
technique allowed for stimuli to be presented in the silent 
gaps between scans. Total functional imaging time was 48 
minutes. Auditory stimuli and the visual 'repeat' instructions 
were presented to the participants using E-Prime v.1.2 and a 
NEC LT265 DLP projector. Participants viewed the screen 
via a mirror system mounted on the head coil [11]. The 
audibility of stimuli for young and older groups was equated 
by choosing SNRs such that word-report performance on 
low-context sentences was matched. Accordingly, SNRs 
from      -5 dB, -3.5 dB, -2.5 dB, -1 dB, and 0 dB were used 
for younger people and -3.5 dB, -2.5 dB, -1 dB, 0 dB, and 
+2.5 dB for older adults. 

D. Data Preprocessing 

The fMRI data were preprocessed using Statistical 

Parametric Mapping software (SPM8, Wellcome Department 

 
1 The same dataset with similar description is used in [17]. 

of Cognitive Neurology, London, UK). MR images (DICOM 

images to which the Siemens motion correction algorithm 

had been applied) were converted to NIFTI format before 

preprocessing. Preprocessing steps included realignment, 

coregistration and the segmentation-normalization of SPM8. 

Data were spatially smoothed using Gaussian kernel of 8 

mm. Single-subject general linear models were created by 

coding the condition to which each scan of the session 

belonged (i.e., whether it followed the presentation of 

silence, signal-correlated noise, or a high- or low-context 

sentence at different SNRs (including clear speech). The 

hemodynamic response function was selected as the basis 

function. Three functional contrasts were calculated: SCN 

vs. silence identifies those brain regions that process the 

acoustic properties of sound stimuli. Word meaning 

responses were assessed by comparing the low-context 

sentences vs. SCN. Sentence meaning responses were 

assessed by contrasting high- and low-context sentences. 

III. METHODS 

A.  K-Singular Value Decomposition 

Each of the previously described functional contrast 
images was separately used as an input signal to the K-SVD 
to obtain patterns of brain activation. K-SVD is the 
generalization of the k-means algorithm, which decomposes 
the input matrix (Y) into a linear combination of dictionary 
elements using the fewest number of non-zero coefficients 
[9]. In other words, it solves the following minimization 
problem:  

 . ,  subject to  }{min 00

2

,
TxiDXY iFxD

  (1) 

In this equation 
NV

N R], …, y, yY = [y 21 is the 

observation matrix, where yi is the vector containing 

functional contrast of subject i, 
NK

N R], …, x, xX = [x 21  

is the sparse modulation matrix, and 
KV

K R], …, d, dD = [d 21 is the over-complete dictionary 

containing K signal atoms. Each of these atoms represents a 
pattern of brain extracted from the subjects’ functional 
contrasts. V, N, and K are the number of voxels, subjects and 
brain patterns respectively, ||.||F is the Frobenius matrix 
norm and T0 is the number of non-zero elements in each 
linear combination [9]. 

To find the sparsest representation of input contrasts, K-
SVD iteratively updates the vectors xi and each column of 
the dictionary in two steps [9]. Assuming a fixed dictionary, 
in the first step, an N minimization problem of the following 
format is solved using the Orthogonal Matching Pursuit 
(OMP) algorithm [14].  

, ..., N,  iTxiDxy iFii
xi

21, ,  subject to  }{min 00

2
  (2) 

In the second step, for each column of the dictionary (dk), 
the representation error (Ek) is computed and using SVD 

decomposition the updated dictionary column ( kd̂ ) is 
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obtained; 

        , ..., K, kVUE xE T
k

j 21   ,  ,d-Y
kj

jk  


      (3) 

where x
j
 is the jth row in X. The first column of U is chosen 

as kd̂  and the first column of V multiplied by Δ(1,1) is 

chosen as the updated x
k
. These steps are run for a finite 

number of iterations (See [9] for more details). In this study, 
the number of iterations was set to be 20, the number of 
brain patterns (K) was set to be 16, and number of non-zero 
elements (T0) in each linear combination was set to be 8

2
. 

B. Automatic Classification 

Classification based on fMRI data is not trivial, due to the 

high dimensionality of the input feature space and small 

number of subjects (16-30, approximately) that are usually 

available. In order to overcome these problems, we used the 

sparse mixing coefficients as input features. These low-

dimension coefficients enable us to make inferences about 

how each subject’s functional contrast is modulated by a 

source. Also it can be found whether one group shows 

stronger component modulation than another. We used a 

Fisher Linear Discriminant (FLD) classifier to classify 

subjects. FLD is a linear discriminant function 

f(x)=<ω.x>+b with the parameter vector ω and the scalar b. 

It tries to find a linear combination of features (x) that 

discriminate between two classes. The weights of this linear 

combination are given as ω = Sw
-1 

(µ1 - µ2), where µ1 and µ2 

denote the respective means of the first and second classes, 

and Sw is the within-class scatter matrix [15]. The data were 

split into training and test sets and classification performance 

was averaged on each test set. In each measurement, 70% of 

the whole dataset (11 young and 11 older subjects) were 

used to train the classifier and the remaining subjects were 

taken as the test set. In the training phase, dictionary atoms 

and sparse-coding coefficients were obtained from the K-

SVD analysis on 22 subjects. The columns of the sparse-

coefficient matrix, i.e. xi, were used as input features to train 

the classifier, in order to group the 22 subjects into two 

classes (young and older adults). In the test phase, the 

dictionary atoms were used to compute the classifier's input 

features for the test subjects. In other words, the sparsest 

representation of Dxi = yi was computed approximately, 

using an OMP algorithm. In this equation, D is the dictionary 

matrix generated from the training dataset, yi is the vector of 

contrast of the test subject, and xi is the vector of sparse 

coefficients for each of the test subjects
3
. 

IV. RESULTS 

The goal of our sparse fMRI data analysis is to examine 
whether sparse coefficients could be used to accurately 
classify young and older adults on the basis of cognitive data 
from a speech perception experiment. Statistical difference 
of sparse coefficients and classification accuracy were 
selected to evaluate the performance of the method. 

 
2 http://www.cs.technion.ac.il/~elad/Various/KSVD_Matlab_ToolBox.zip 

3 http://cmp.felk.cvut.cz/cmp/cmp_software.html. 

 

Figure 1.  The most discriminative pattern for (a) contrast 
comparing high-context sentences to low-context sentences, 
(b) contrast comparing low-context sentences to SCN, (c) 
contrast comparing SCN to silence, and the p-values on of a 
two-sample t-test on their corresponding sparse coefficients. 

A. Separability of Sparse coefficients 

A two-sample t-test on the sparse mixing coefficients was 
performed for each functional contrast. There were two 
significant components (p-value < 0.05) for the contrast of 
SCN vs. rest and contrast of high-context sentences vs. low-
context sentences; but there were three significant 
components (p-value < 0.05) for the contrast of low-context 
sentences vs. SCN. Fig. 1 shows the most significant 
component for each of the contrasts together with the p-
values of a two-sample t-test on their corresponding sparse 
coefficients.  

B. Classification 

Performance of the classification procedure was 
measured by repeatedly splitting the data into training and 
test sets and averaging classification performance on each 
test set. The process of splitting the data was done 50 times 
(each time selecting different 11 young and 11 older subjects 
as the training set and the remaining subjects as the test set), 
and the classification procedure was run 5 times, 
randomizing the order of subjects in the training dataset each 
time. We calculated the False Positive (FP), False Negative 
(FN), True Positive (TP) and True Negative (TN) values and 
took the classification accuracy, i.e. the ratio between TP and 
TN values to the total number of outcomes, as the 
performance metric. We selected the sparse coefficients 
based on the mean difference (p-values) they created 
between two groups. The coefficients were sorted by their 
corresponding p-values in an ascending order ([xp1, xp2, …, 
xpK], p1 ≤ p2 ≤ … ≤ pK). Each time, M of them were chosen 

Component:12 feature:1

 

Component:14 feature:1

 
(a) (b) 

Component:8 feature:1

 

 

Contrast p-value 

High vs Low 0.0307 

Low vs SCN 0.0025 

SCN vs Silence 0.0237 
 

(c) (d) 
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(xp1, xp2, …, xpM), and classification was performed. To 
further evaluate the classification performance, we plotted 
the Receiver Operating Characteristic (ROC) curves and 
calculated the Area Under the Curves (AUC). Detection 
reliability ρ [16], which is defined based on AUC as ρ = 
2×AUC-1 was obtained. The accuracy is scaled to obtain 
ρ=1 for perfect detection, and ρ=0 for failure in detection. 
Fig. 2 shows the detection reliability for each of the 
functional contrasts across numbers of features used (M = 1, 
2, …, K). As might be expected, using more coefficients does 
not imply higher detection reliability, because some of the 
obtained patterns of activities and their associated 
coefficients are similar between the two groups. Fig. 3 shows 
the best classification accuracy obtained for each of the 
functional contrasts. Results show that the young and older 
subjects can be classified based on their patterns of brain 
activation. Considering the fact that the number of subjects is 
low and the dimensionality of the input features is quite high, 
the results are promising. Fig. 2 and Fig. 3 show that the 
contrast comparing low-context sentences to unintelligible 
noise (SCN) can classify the two groups with an accuracy of 
more than 80%. 

 

Figure 2.  Detection reliability for each of the functional 

contrasts across numbers of features used. The contrast of 

comparing low-context sentences to unintelligible noise 

(SCN) can classify the subjects with higher reliability. 

 

Figure 3.  Best classification accuracy obtained for each of the 

functional contrasts. 

V. CONCLUSION 

Using a K-SVD method together with a linear 

classification algorithm, we have demonstrated that cognitive 

patterns can be used to classify individuals in the absence of 

behavioural differences. To demonstrate the potential of the 

proposed framework, a dataset comprising functional images 

of cognitively normal subjects in two age groups was used. 

Feasibility of the approach was shown by examining the age-

related differences in the functional patterns of activation in 

healthy subjects. In future studies, we plan to apply the 

method for diagnosis of brain disorders. 
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