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Abstract— The time and space complexities of Markov ran-
dom field (MRF) algorithms for image segmentation increase
with the number of edges that represent statistical dependencies
between adjacent pixels. This has made MRFs too compu-
tationally complex for cutting-edge applications such as joint
segmentation of longitudinal sequences of many high-resolution
magnetic resonance images (MRIs). Here, we show that simply
removing edges from full MRFs can reduce the computational
complexity of MRF parameter estimation and inference with
no notable decrease in segmentation performance. In particular,
we show that for segmentation of white matter hyperintensities
in 88 brain MRI scans of elderly individuals, as many as
66% of MRF edges can be removed without substantially
degrading segmentation accuracy. We then show that removing
edges from MRFs makes MRF parameter estimation and
inference computationally tractable enough to enable modeling
statistical dependencies within and across a larger number
of brain MRI scans in a longitudinal series; this improves
segmentation performance compared to separate segmentations
of each individual scan in the series.

I. INTRODUCTION

Markov Random Fields (MRFs) provide a probabilistic
graphical model framework for solving image processing
tasks such as denoising, inpainting, and segmentation. By
modeling each pixel as a node in a graph, and dependen-
cies between neighboring pixels as edges between nodes,
MRFs are able to represent complex statistical relationships
between image pixels in a mathematically principled way.
Numerous approaches have been presented for the two key
computational problems that must be solved to use MRFs in
practice: parameter estimation, using labeled ground-truth
images to estimate the parameters of probabilistic models of
inter-pixel dependencies; and inference, assigning labels to
the pixels that are in accord with the estimated inter-pixel
dependencies [1].

Unfortunately, the time and space complexities of all
current approaches to parameter estimation and inference
increase at least linearly with the number of edges that
are included to account for statistical dependencies between
adjacent pixels (Table 1). Typically, if each pixel corresponds
to a node in the graph, a lattice of edges is induced that
connects each node to its k nearest neighbors. Thus, for high
resolution images with a large number of pixels, the resulting
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MRF can include so many nodes and edges that parameter
estimation and inference become intractable. This is becom-
ing an especially important problem in neuroimaging, where
state-of-the-art studies are collecting longitudinal series of 5
to 10 volumetric MRI scans of the same individual over time
[2]. Each scan may contain a 3D array of 256 x 256 x 256
pixels, and besides edges that model dependencies between
adjacent pixels within an individual scan, it is desirable
for the MRF to encourage biologically-plausible dynamics
in segmentation labels over time by including MRF edges
that connect a node from one scan to a neighborhood of
corresponding nodes in a scan that is adjacent in time. Due to
their large number of edges, performing parameter estimation
and inference in these large graphs is beyond the scope
of even the most state-of-the-art MRF algorithms unless
substantial heuristic approximations are employed.

In this paper we argue for making existing MRF algo-
rithms tractable for such large-scale applications by removing
edges from the graphs on which they operate. We focus on
applications such as brain MRI segmentation for which all
images to be segmented are warped to a template space such
that each node and edge corresponds to an analogous anatom-
ical location across scans. Before parameter estimation, we
use training data to determine which edges to remove from
the graph. We then run parameter estimation and inference
on the resulting, reduced graph. We test the accuracy of the
reduced graphs for MRI-based segmentation of white matter
hyperintensities (WMHs), a brain imaging finding important
to Alzheimer’s disease, multiple sclerosis, depression, and
other brain disorders. These experiments suggest that a ma-
jority of the edges in an MRF can safely be removed without
compromising WMH segmentation performance. Finally, we
show that such reduced graphs give rise to increased WMH
segmentation accuracy by enabling unified segmentation of
large graphs that represent a longitudinal series of three or
more high-resolution MRIs along with spatial and temporal
label dependencies.

II. RELATED WORK

Several prior algorithms simplify the structure of graphical
models. Hierarchical models connect neighborhoods of pix-
els not to each other but to a “supernode” that approximates
the entire neighborhood. Neighborhoods of supernodes are
connected to supernodes at a higher level, and so on. This
technique forms tree-structured graphs which allow efficient
parameter estimation and inference, but their outputs are
often “blocky” due to the fact that dependencies between
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TABLE I
COMPLEXITY OF MRF ALGORITHMS

Method Time Complexity Space Complexity
Direct Inference O(|L||V ||E|) O(|L||V |)
Simulated Annealing O(n|E|) O(|V |)
ICM O(n|E||L|) O(|V ||L|)
Belief Propagation O(n|E||L|) O(|E||L|)
Junction Tree Algorithm O(|L|k) O(|L|k)
Graph Cuts O(|E||V |2) O(|V |)
IPF O(nIPFnBP|E||V |) O(|E|)
Pseudolikelihood O(n|T ||E|) O(|T ||E|)

Time and space complexity of major algorithms for MRF inference and
parameter estimation, assuming a naive implementation for graphs with |V |
nodes and |E| edges, each of which correspond to a compatibility function
with a single unique free parameter. Other terms are: n: the number of
iterations, |T |: the size of the training set, and |L|: the number of possible
pixel labels. Note that |E| occurs in the time complexities of all but the
Junction Tree Algorithm, for which the tree width k depends indirectly upon
|E| as well. The |E| term also appears in many of the space complexities.

neighboring pixels are represented by variable-length paths
through the tree [3], [4].

MRF parameter estimation can be performed with an
L1 regularizer that encourages zero-valued parameters that
exert no influence on inter-pixel label dependencies and thus
represent removable edges [5]. However, these methods re-
quire solving an expensive regularized parameter estimation
problem on a full graph to determine which edges to remove;
our starting point is imaging data so large that solving such a
parameter estimation problem is computationally intractable.

Another set of methods iteratively removes edges from
decomposable models such as Bayesian networks, for which
an edge can be removed without modifying any other model
parameters [6], [7]. Lattice-structured graphs that are natural
for modeling imaging data are generally not decomposable.
It is possible to convert lattice models into junction trees,
which are decomposable and have several reduction methods
designed for them [8], but converting a lattice-structured
graph to a junction tree requires adding triangulating edges
between all square-shaped configurations, rendering this ap-
proach intractable. Our approach is to apply iterative edge
removal techniques to large-scale lattice-structured MRFs for
which edge removal has not been investigated in any depth.

III. METHODS

We begin with 3D lattice MRFs with a heterogeneous
Potts compatibility function at each edge, Pseudolikelihood
maximization as a parameter estimation objective function,
and a simplex-based optimizer.

A. MRFs for image segmentation in a template space

MRFs model the joint probability of fields of random
variables. In image processing, each image pixel i typically
has a corresponding node vi ∈V , and the label fi ∈ L assigned
to vi is one such random variable. Each neighboring pair
of nodes is connected with an edge e ∈ E representing a
statistical dependency between adjacent pixel labels. For
each edge e a compatibility function Ψ assigns a probability
to each possible assignment of labels to the nodes it connects.
For each node vi the observation function Φ assigns a
probability to all labels in L given the image intensities at

that location, oi. The MRF models the field of pixel labels
with the energy function:

U( f ) = ∑
i∈V

Φ(i, f )+ ∑
e∈E

Ψ(e, f ) (1)

Here, f is an assignment of labels from L to V , and F is the
space of all possible labelings. Inference is the process of
finding an f ∈ F that minimizes this energy, and parameter
estimation is the process of determining a set of parameters
governing Φ and Ψ that conform to oi and f provided by
labeled training data [1].

Many brain image segmentation tasks, including our
WMH segmentation application, are performed in a template
space. All images are nonlinearly warped to a common
template image as described previously [9] so that each pixel
corresponds to the same anatomical location across subjects.
This approach allows us to provide a detailed model of label
dependencies that vary from location to location to reflect the
spatially-variable properties of distinct anatomical regions. In
particular, our compatibility function Ψ(e, f ) is a spatially
heterogeneous Potts model: each e ∈ E is assigned its own
free parameter Θe representing the amount of energy added
to Ψ in the event that the nodes connected by e take on
differing labels.

Our observation function is Φ(i, f ) = ∑i[O(oi, fi) ×
Fr(i, fi)] in which Fr(i, fi) is the label prior: the frequency of
label fi occurring at location i in the training data. O(oi, fi)
gives the probability of label fi being associated with image
intensity oi at pixel i. We model O(oi, fi) using one log-
normal distribution per tissue label, as described previously
[9]. These observation and compatibility functions are used
throughout all experiments with full and reduced MRFs
described in Section IV. For parameter estimation, we used
a simplex-based optimizer to maximize graph pseudolike-
lihood [10], and for inference we used Belief Propagation
[11].

B. Prior-driven edge removal

Under the above formulation, graph reduction is the pro-
cess of removing as many e ∈ E from the graph as possible
while maintaining the strongest possible connection between
minimizing U( f ) and maximizing the accuracy of the re-
sulting pixel labels. Our approach is based on the intuitive
principle that pixel neighborhoods with little inter-subject or
inter-pixel label variability require little or no modeling of
inter-pixel label dependencies by Ψ. For example, a pixel i in
an anatomical region where WMHs rarely occur will usually
be assigned a non-WMH label based on the observation
function Φ alone, and the labels of surrounding pixels are
so often also non-WMH along with it that they provide little
additional useful information about fi. Thus, edges between
pixel i and its neighbors can be removed with little impact.

We use label frequency information to quantify the im-
portance of edges in the graph in an approach we call prior-
driven edge removal. We assign each edge e ∈ E an edge
prior pe. If e connects nodes i and j, we define pe as follows:

pe = min(max
l∈L

Fr(i, l),max
l∈L

Fr( j, l)) (2)
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in which Fr(i, l) denotes the frequency at which label l
occurs at location i, in the labeled training data. The value
of pe becomes greater as the label distribution at both of the
nodes becomes more concentrated about a single label; thus,
edges with a high pe are likely to be relatively less relevant
because the labels of the pixels that they connect are largely
determined by their frequency irrespective of imaging data
or neighboring labels.

We remove edges based on pe using two approaches.
In backward selection, we begin from a full graph and
iteratively remove a designated number of randomly-selected
edges from among those with a high pe. In the forward
selection approach, we begin from a graph with no edges and
iteratively add a designated number randomly selected from
among those with low pe. We choose edges randomly based
on their pe value, rather than adding or removing individually
based on a sorting by pe, because nearby edges often have
highly similar pe values. The random element thus decreases
the spatial locality of inserted or removed edges, and thus
encourages more global changes to the graph in a smaller
number of insertions or removals.

C. Alternative edge removal criteria

We compared prior-driven edge removal against
theoretically-driven, computationally-expensive criteria
that evaluated the impact of edge insertions and removals
on MRF parameter estimation and inference diagnostics.
First, we considered a forward selection approach in which
the next edge to be added is the one that provided the
greatest increase to the training data pseudolikelihood [10],
which can be thought of as approximating an exponential
of the U function evaluated over all training examples. We
then considered a backward selection approach designed to
first train the full graph and remove edges that minimally
modified the behavior of that graph in terms of the
distribution of U( f ) values over all possible label sets F .
We used the Kullback-Leibler (K-L) divergence [12] to
quantify differences between full and reduced graphs in this
sense. We evaluated the viability of these more expensive
approaches on small graphs in Sec. IV-B to show that they
lack substantial advantages over our prior-driven method.

D. Retraining Approaches

Because lattice-structured MRFs are not decomposable,
removal or addition of a single edge could theoretically
change the optimal values for compatibility function pa-
rameters throughout the graph. This means that retraining
is theoretically required: a new run of parameter estimation
after every such graph modification. However, in real-world
graphs, removing or adding an edge in one corner of a
large graph is expected to have little effect on compatibility
parameters of distant edges, especially because parameter
estimation algorithms applied to large-scale graphs effec-
tively only optimize parameter values with respect to an
extended local neighborhood. Therefore, in Section IV-B
we experimented with omitting re-training for small graphs,
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Fig. 1. Results of WMH Segmentation on a small 4× 4 subgraph of
MR Images at varying levels of graph reduction with each technique.
Note that our proposed prior-driven reduction method, without retraining,
performs comparably and often better than the more costly methods that are
intractable for larger graphs.

and showed that doing so does not substantially alter the
inference performance of the reduced graphs.

IV. EXPERIMENTS

A. Data

We evaluated the utility of graph reduction on 958 fluid-
attenuated inversion recovery (FLAIR) MRI scans of elderly
individuals aged 70-90 in the University of California, Davis
Alzheimer’s Disease Center (ADC) Longitudinal Cohort
covering a range from normal cognition to dementia. Subject
recruitment, image acquisition, ground-truth semi-manual
WMH segmentation, and warping of these images to a
common anatomical template has been described previously
[13].

B. Segmentation of small sub-images

In these experiments we compare our prior-driven edge
removal and edge removal based on the more costly pseu-
dolikelihood and K-L divergence criteria (Sec. III-C). We
selected the same 4× 4 pixel sub-image from each of the
images described in Sec. IV-C and ran WMH segmentation
on 88 of them, using the other 870 sub-images as training
data. For each method, and for each reduced graph resulting
from iterative edge removal or addition, we performed pa-
rameter estimation on the 870 training images and inference
on the 88 remaining ones, and calculated the intraclass
correlation coefficient (ICC) between the volume of pixels
the automated method labeled as WMH, and the volume of
WMH-labeled pixels provided by ground-truth semi-manual
FLAIR segmentation. Higher ICC values denote stronger
agreement between estimates and ground truth (Fig. 1). The
expensive pseudolikelihood and K-L divergence methods did
not perform substantially better than the prior-driven reduc-
tion method in graphs of any size. In addition, re-training as
described in Sec. III-D did not lead to substantially higher
performance either. We concluded that prior driven edge
removal without retraining performs comparably to more
costly and theoretically more accurate methods and therefore
applied this method to the full images.

C. Segmentation of full images

We performed the forward and backward variants of our
prior-driven edge removal and calculated the ICC between
ground-truth WMH volumes and those estimated automat-
ically using the reduced graphs (Fig. 2). The ICC drops
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Fig. 2. Results of applying various levels of our proposed prior-driven graph
reduction in both the backward-selection and forward-selection variants,
without retraining, to a WMH segmentation task. Note that as many as 58%
of the edges can be removed without substantially damaging segmentation
performance, and that the two directional variants perform comparably for
similar levels of reduction.
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Fig. 3. Occurrences (above axis) and magnitudes (below axis) of significant
decreases in segmented WMH volume, a biologically implausible event,
between sequential pairs of segmented scans. Joint inference with full graphs
is intractable for 3+ scans at a time, and so was omitted. Note that joint
segmentation reduces these occurrences and their magnitudes versus the
traditional separate method, and that segmentation performance of reduced
graphs is only slightly reduced compared to full graphs.

slightly on removal of the first few edges, but then remains
remarkably stable until as many as 58% of edges have
been removed. This suggests that more than half of MRF
edges can safely be removed without substantially damaging
WMH segmentation performance. We also note that the
performance of forward- and backward-selection methods
are convergent around this point, suggesting that there may
be no strong reason to prefer one or the other approach.

D. Longitudinal Segmentation of multiple MR Images

To determine whether graph reduction enables new ap-
proaches to segmentation of longitudinal MRI series, we
performed graph reduction using the backward-selection,
no-retraining variant of our proposed method and used a
graph with about 58% of edges removed for longitudinal
segmentation. To jointly segment a series of k images for
each subject, we created k replicas of the reduced graph
and introduced new edges that connected corresponding
nodes across adjacent time points. First, we performed joint
segmentation with full and reduced graphs on the scans of
179 subjects with exactly two scans. Next, we performed
joint segmentation with the reduced graph on each of the
40 subjects with scans at three or more time points. Joint
inference on a full graph is intractable for these longer
series, and so was not performed. For comparison to a more
traditional approach, we also segmented each scan in a series
separately from the rest of the series.

To analyze these results, we examined occurrences of
an implausible result: WMH volumes decreasing over time.
For each subject, we calculated change in segmented WMH

volume between subsequent pairs of time points. We then
counted those pairs with significant decreases in WMH
volume (> 0.43 CC), and calculated the average magnitude
of these decreases. We present these results in Fig. 3.

In these experiments, joint segmentation led to fewer
occurrences of such implausible results versus corresponding
separate approaches. Joint segmentation also reduced the
magnitudes of these decreases, when they did occur. Con-
sistent with Sec. IV-C, segmentations using reduced graphs
were only slightly inferior to their non-reduced counter-
parts, when available. The lowest average change magnitude
overall was achieved by joint segmentation of the multi-
time point dataset, which could not practically be performed
without the reduced graph.

V. DISCUSSION
In this work we proposed reducing the computational cost

of MRFs for image segmentation by removing edges from
the graphs. We showed that for a WMH segmentation task,
removing the majority of edges leads to a negligible drop in
segmentation accuracy, and we showed that removing edges
in this way makes joint segmentation of longer MRI series
possible. Such joint segmentation of longitudinal series led
to greater biological plausibility in WMH change.

Future work should investigate why more costly,
theoretically-driven edge removal metrics showed no sub-
stantial benefit over randomly driven edge removal. Addi-
tional work will also focus on extending edge removal to
other MRF tasks such as 3-tissue brain segmentation and
MRI smoothing.
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