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Abstract— Identifying associations between the shape prop-
erties of brain regions, measured from magnetic resonance
imaging (MRI), and numerical measures of neurodegenerative
disease burden can clarify whether disease processes lead to
distinctive spatial patterns of brain atrophy. However, prior
methods for identifying such associations between shape and
clinical variables either failed to summarize shape patterns
into a concise set of summary measurements, or risked failing
to discover such associations by extracting summary shape
features blinded to the clinical variables. We present a method
that overcomes these limitations by directly searching for a
small set of linear shape features–shape regression components–
that simultaneously account for a large amount of population
shape variability and are highly correlated with a numerical
clinical variable of interest. When applied to hippocampi of 299
Alzheimer’s Disease Neuroimaging Initiative (ADNI) partici-
pants, the method identified correlations between hippocampal
atrophy and markers of AD pathology and cogniton that were
stronger than, and covered a more extended spatial region than,
those identified by competing approaches.

I. INTRODUCTION

Shape features of brain regions have the potential to be

important magnetic resonance imaging (MRI)-based bio-

markers of neurodegenerative disease processes because

these processes often inflict a stereotypical spatial pattern

of damage to the brain regions over time. For example,

the hippocampus (HP), a brain region that is critical to a

variety of cognitive functions including memory, experiences

a characteristic spatial pattern of atrophy over the biological

course of Alzheimer’s Disease (AD). Computational shape

features that quantify the degree to which brain regions such

as the HP have undergone such a pattern of shape change

[1][2] could be used to detect neurodegenerative diseases pre-

clinically or to detect beneficial effects of disease modifying

therapies; but discovering such atrophy patterns depends on

solving the difficult problem of finding shape characteristics

that are strongly associated with numerical clinical variables

such as biochemical surrogate markers of the disease from

cerebrospinal fluid (CSF) or blood. Identifying such shape

characteristics amounts to solving a regression problem with

shape features as predictors and clinical variables as out-

comes or vice versa.

There are currently two general approaches for solving

this shape regression problem. Pointwise linear regression

[3][4] solves separate linear regression problems at a large

set of points sampled from the brain region surface: at
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each point, a measure of local region thickness is regressed

against the clinical variable. Intuitive 3D color maps display

the strength of association between local thickness and

the clinical variable across the region surface. However,

correcting for the large number of statistical tests performed

by this technique reduces its sensitivity, and its inability

to aggregate pointwise associations over extended spatial

neighborhoods makes it difficult to summarize its discovered

shape patterns into a compact set of summary measurements.

Linear subspace methods [5][6] first decompose the high

dimensional vector of brain region surface point coordinates

or local thicknesses into a set of linear components that each

represent a prominent mode of shape deformation among

the population of shapes. These linear shape deformation

features are then correlated with the clinical variables post

hoc. Because the shape features are determined without any

reference to the clinical variables, there is no guarantee that

a linear subspace method will identify any shape features

that are strongly associated with the clinical variable even if

such an associated shape feature is present in the data.

We address the drawbacks of existing linear subspace

methods by directly searching for a small number of dom-

inant linear shape patterns that account for as much of the

shape variability across the population as possible, while

simultaneously being as highly correlated with a clinical

variable as possible. Applying the technique to a large set

of HP surfaces of healthy elderly individuals and elders with

mild cognitive impairment (MCI) and Alzheimer’s disease

(AD) suggests that the technique is superior to existing

linear subspace methods and pointwise regression for sen-

sitively identifying a concise set of shape patterns that are

strongly correlated to relevant numerical variables such as

age, CSF markers of AD pathology burden, and measures of

cognitive function. In Section 2, we present the framework

and implementation of our method. In Section 3, we show

experimental results comparing the technique to principal

component analysis (PCA) and pointwise regression on a

large dataset.

II. METHODS

A. Shape Components

We begin by reviewing the mathematical formulation

for traditional linear subspace methods that identify shape

patterns without reference to clinical variables. Let v j ∈ R
n

denote a vector of brain region surface point coordinates, or

the local region thicknesses at those points, for individual j

in a population. The linear subspace methods provide vk
j, a

kth-order approximation of v j:
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v j ≈ vk
j = e0 +

k

∑
i=1

αi, jei, (1)

where vk
j is the sum of the e0, the average shape over all

v j in the population, and a linear combination of k shape

components, {e1, · · ·ek}, ei ∈ R
n. Without loss of generality,

we assume that the shape vectors v j have been transformed

such that e0 = 0. Equation ( 1) can be also represented in

matrix form as:
V = BC, (2)

where V is a matrix whose column vectors are v j, for j =
1 · · ·m, B = (e1 e2 · · · ek) is the basis matrix, and C = {αi, j}
is the coefficient matrix. In this paper, shape components

are unit-norm basis vectors and orthogonal to each other, so

BT B = I and C = BTV. The coefficient vector for a shape

c j = [α1, j,α2, j, . . . ,αk, j]
T is a representation of v j in terms

of the shape components ei, which capture the salient shape

characteristics of v j in terms of how it is deformed away

from the population mean. Differing methods for estimating

the ei have differing advantages in terms of conciseness (i.e.,

how many ei are required so that vk
j accurately approximates

v j) and interpretability (i.e., how well ei corresponds to an

easy-to-explain aspect of brain anatomy) [7][6]. Typically,

to associate region shape with clinical variables, we first

estimate the ei and coefficients αi, j in a way that does not

depend on the clinical variables. Then, we linearly regress

the resulting coefficients αi, j against the clinical variables.

B. Shape Regression Components

In this paper, rather than estimate ei blinded to clinical

variables, we estimate shape regression components that are

designed to maximize associations with a clinical variable.

Given m individuals and a vector x ∈ R
m that contains

one numerical clinical variable value per individual, we

seek shape components ei such that the shape regression

component coefficient vector ααα i = [αi,1,αi,2, · · · ,αi,m]T is

strongly correlated with x. Without loss of generality we

assume that ααα i and x have been scaled such that they have

unit norms. Let βi = αααT
i x and βββ = Cx = [β1,β2, · · · ,βk]

T .

Greater values of β 2
i suggest stronger correlations between

ααα i and x; for this reason we refer to β 2
i as the regression

power of ei. Our goal is to find a concise set of ei that have

high regression power.

If the linear subspace spanned by B is fixed, it can be

proven that ‖βββ‖2 =
k

∑
i=1

β 2
i is a constant, which implies that

the total amount of regression power over the ei is constant.

Our optimization seeks to compress this regression power

into the smallest number of ei possible; i.e., we iteratively

update ei in order to set as many βi to 0 as possible; because

‖βββ‖2 is constant, this has the effect of creating a small

number of large-magnitude βi. To do so, we consider the set

[
β 2

1

‖βββ‖2
,

β 2
2

‖βββ‖2
, · · · ,

β 2
k

‖βββ‖2
] as a probability distribution that we

want to sparsify. We update the ei to minimize the entropy

of this distribution, which effectively drives as many βi to

zero as possible while setting a small number of βi to large

values.

C. Implementation

We combine entropy minimization with a criterion that

forces the ei to account for the greatest amount of population

shape variability possible. As in a prior approach [8], we

initialize ei to be the principal components of the v j, and we

iteratively rotate all possible pairs of (ei,e j) together in the

plane they span by the same angle θ to minimize an energy

function. The energy function is E = (1−λ )E1 +λ E2. E1 is

used to encourage the ei to account for the greatest amount

of population shape variability possible and E2 encourages a

low-entropy distribution of βi as described above. The trade-

off factor λ controls the relative contributions of these two

competing terms. As described previously [8], E1 is:

E1 =
k

∑
i=1

−
‖ααα i‖

2

sα
log(

‖ααα i‖
2

sα
),

where sα =
k

∑
i=1

‖ααα i‖
2. As discussed in section II-B, E2

takes on lesser values when the entropy of the βi values

is minimized:

E2 =
k

∑
i=1

−
β 2

i

‖βββ‖2
log(

β 2
i

‖βββ‖2
).

III. EXPERIMENTS

We identified baseline HP shape features associated with

baseline clinical variables including age, CSF measures of

AD pathology (amyloid, tau, and phosphorylated tau), and

cognitive measures among 299 left HP from participants in

the Alzheimer’s Disease Neuroimaging Initiative (ADNI),

168 of whom had CSF measurements. MRI acquisition,

HP delineation, and calculation of v j representing local HP

region thicknesses at corresponding surface points across

subjects have been described previously [9]. We compared

shape regression components with analogous pointwise lin-

ear regression models [3] and PCA by assessing the strengths

of associations between the clinical variables and shape

regression component coefficients, PCA coefficients, and

local HP radial distances respectively. In all shape regression

optimizations, we set λ to 0.9.

A. Shape regression components provide stronger associa-

tions with clinical variables

First, we ran shape regression component optimization

with each optimization searching for shape regression com-

ponents associated with one of the clinical variables. For each

clinical variable we ran linear regression models that assessed

the strengths of associations between the shape regression

component coefficients and the clinical variable. We then ran

PCA on the HP to provide shape components that accounted

for the greatest amount of HP shape variability possible; we

used linear regression to test the strengths of associations

between each clinical variable and the PCA coefficients.

Finally, we ran pointwise regression [3], i.e. we calculated a

separate linear regression model at each HP surface point that

associated the local HP radius there to each clinical variable.

Figure 1 illustrates the key differences between PCA and

shape regression components in terms of associations with
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Fig. 1. (a) Plot of correlation coefficients between total tau and coefficients
of principal components and shape regression components. Two sets of
shape components were sorted by correlation coefficients in descending
order respectively. (b) Plot of shape variability accounted for by the two
sets of shape components in the same order as shown in (a). Green lines
in both plots indicate the horizontal positions of the regression component
and the principal component that have the strongest associations with total
tau.

CSF total tau, a key biochemical marker of AD. Exactly

one regression shape component has coefficients whose

correlation with total tau is non-zero, while many principal

component coefficients are correlated with total tau. In fact,

the strength of association between the principal component

coefficient and total tau decreases very gradually from com-

ponent to component, making it unclear how many of these

principal components should be analyzed in further detail

by the end user. In addition, the one regression component

whose coefficients were significantly correlated with total tau

(green line) reflected a large amount of population variability

in HP shape, while the principal component whose coef-

ficients were maximally correlated with total tau reflected

very little population shape variability. This suggests that

while the principal component is associated with tau, the as-

sociation may be irrelevant because it represents a relatively

rare, under-represented shape feature in the population.

Figure 2 shows the p values of linear regressions between

clinical variables and shape features, including principal

component coefficients, shape regression component coeffi-

cients, and individual HP surface point radii. They are plotted

on a logarithmic scale. For the shape regression components

and principal components, the minimal p value over all such

components is plotted. For pointwise regression, the average

p value over all HP surface points with p < .05 is plotted.

For all clinical variables, shape regression components had p

values closer to zero, suggesting a superior ability to identify

shape features that are the most strongly associated with

clinical variables.

B. Shape regression components identify larger HP regions

associated with clinical variables

The next experiment assessed whether there were HP

regions whose significant associations with clinical variables

were identified by shape regression components, but not
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Fig. 2. P values of associations between clinical variables and shape
features, including principal component coefficients, shape regression com-
ponent coefficients, and HP surface point radii, plotted on a logarithmic
scale. See Section III-A for details. The black dotted line represents the
significance threshold 0.05.

identified by pointwise regression. This analysis was de-

signed to assess how much value is added by shape regres-

sion components in terms of sensitivity to identify relevant

HP regions that are larger than those pointwise regression

provides. For each clinical variable we first identified HP

surface points whose radii were associated with the clinical

variable according to pointwise regression. These surface

points were removed from the v j vector, and PCA and

shape regression component analyses were run on the vector

of remaining points as in Section III-A. The significance

of associations between clinical variables and the resulting

principal components and shape regression components are

shown in Figure 3. For each clinical variable, there was

a shape regression component whose coefficient was sig-

nificantly associated with the clinical variable, suggesting

that shape regression components are sensitive enough to

discover HP regions that pointwise regression have deemed

irrelevant but are, in fact, associated with clinical variables.

For many clinical variables, at least one principal component

has coefficients associated with the clinical variable as well,

but the strengths of these associations are generally weaker

than those of the shape regression components.

C. Shape regression components are more specific to indi-

vidual clinical variables

We then explored further whether the shape regression

components identify unique spatial patterns of HP shape

associated with unique clinical variables. To do so, we first

recognized that increasing age is strongly associated with

both HP shape variability and decreased cognitive function;
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Fig. 3. P values of associations between clinical variables and shape
features among HP regions that were deemed non-significantly associated
by pointwise regression. See Section III-A for details. P values are plotted
on a logarithmic scale. For pointwise regression, p values were the average
over all non-significantly associated points, i.e. points with p >= .05. The
black line represents the significance threshold 0.05.

this could lead to principal components that accidentally

associate strongly with both age and cognitive function

because they capture the large amount of HP shape vari-

ability that is associated with increasing age. Therefore, for

each cognitive measure we generated a residual cognitive

measure by performing linear regression with age as the

sole predictor and the cognitive measure as the outcome,

and using the signed residual of this regression as a measure

of cognitive function that is dissociated from age. We then

ran shape regression components analysis with each such

residual cognitive measure, and correlated both the resulting

coefficients and the principal component coefficients with the

residual cognitive measures. A representative result is shown

in Figure 4. The coefficients of one principal component

were significantly associated with both age and a residual

cognitive measure. In contrast, for age and the residual cog-

nitive measure, there were highly distinct shape regression

components whose coefficients were more strongly associ-

ated than the principal component coefficients were. Because

the two significant shape regression components substantially

differ, we conclude that individual clinical variables may be

associated with individual, unique patterns of HP shape, and

shape regression components may be better able to identify

such unique spatial patterns compared to PCA.

IV. DISCUSSION

In this paper, we showed that directly optimizing for

linear shape patterns that both account for population shape

variability and associate strongly with a clinical variable

LM
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Fig. 4. Color-coded maps of the principal component and regression
components associated with age and residual immediate story recall. See
Section III-C for details. Red points indicate ei entries greater than 0, and
blue indicates less than 0. Odd and even columns render the HP from
superior and inferior viewpoints respectively (anterior, medial and lateral
directions are marked with A, M and L).

can identify variable-specific patterns of HP shape better

than PCA and pointwise linear regression can. Future work

should explore whether we are able to further refine these

shape regression components by encouraging them to take

on additional desirable properties such as spatial locality

or discrimination of coefficient values between clinically

defined groups. In addition, as suggested by our analysis

of residualized variables, our method could be extended in a

factor analytic framework to directly ascertain whether there

exist aspects of shape that are jointly associated with several

clinical variables, as opposed to uniquely associated with a

single, individual clinical variable. Finally, future work could

more widely apply the method to other brain regions and

clinical variables beyond those relevant to AD.
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