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Abstract— Registration of pre-operative CT datasets to intra-
operative 3D freehand ultrasound has been of high interest for
computer assisted orthopedic surgery. Feature-based registra-
tion relies on an accurate detection of the bone surface in the
B-mode ultrasound images. In this work we present a fully
automatic bone detection approach for US. The pre-operative
CT is utilized to create a patient-specific bone model for our
joint detection-registration framework. The model provides a
geometric constraint for accurate and robust detection. Simul-
taneously to the detection, our method yields a close estimate
of the rigid transformation from US to CT, which can be used
as an initialization for further refinement through sophisticated
intensity-/feature-based registration methods. We evaluated our
approach on datasets of the human femur acquired in a cadaver
study and demonstrate a mean bone detection error of below
0.4mm.

I. INTRODUCTION

Orthopedic surgery rapidly becomes more common con-
sidering the increasing amount of elderly people due to
the demographic shift. Common orthopedic interventions
include hip and knee replacement, reparations of femoral
neck and trochanteric fractures and placement of pedicle
screws. Computer-Aided Orthopedic Surgery (CAOS) pro-
vides assistance in the pre-operative planning phase and
navigation during surgery.
In most of CAOS procedures, a computer tomography (CT)
scan of the region of interest (ROI) is acquired prior to
surgery, showing clear information about the bone for di-
agnosis and pre-operative planning. Intra-operatively, this
information can be utilized for navigation when the patient’s
real-world position and the pre-operative CT are registered
into a common reference frame. This is often achieved with
invasive reference objects drilled into the bone or fiducial
markers for point-based registration.
In this work, we investigate a non-invasive approach, which
is based on registration of intra-operative 3D freehand
ultrasound (3DUS) to a pre-operative CT dataset. More
specifically, point-based registration is performed between
the bone surface extracted from 3DUS and CT. Our main
novelty is the fully automatic bone surface detection in US,
together with a simultaneous and mutually inter-dependent
registration to the pre-operative CT. We demonstrate that
as a consequence, the detection accuracy is improved and
a close registration of the detected bone surface in US to
CT is yielded, which can be used as an initialization for a
subsequent image-based registration refinement step.
We design our proposed approach towards several criteria
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relevant for surgery; besides robustness, accuracy and quick
execution time – which includes performing interactive tasks
like manual pre-alignment of the CT-dataset – the procedures
is conceptualized to fit into the surgical workflow without
exhaustive training of the physician.

II. STATE OF THE ART

Most feature-based CT-3DUS registration algorithms rely
on an accurate detection of the bone surface in the acquired
3DUS datasets, which is then registered to a pre-operatively
generated bone surface from CT (e.g. a mesh). While bone
segmentation is relatively straightforward in CT, the main
challenge lies in the detection of bone in US images, which
are view-dependent and additionally affected by speckle
noise and artifacts.
Bone in ultrasound datasets usually appears as a bright and
connected ridge with a shadow region afterwards. Kowal
et al. [13] use these features directly in an approach com-
bining threshold, morphological and connectivity operations
to estimate the bone contour. Jain et al. [9] captured these
characteristics in a Bayesian probabilistic framework giving
the probability of every pixel for belonging to the bone
surface. Other methods use concepts like fuzzy logic [5],
dynamic programming [6], or local phase information of the
ultrasound signal, which can be extracted through 3D-Log-
Gabor-filters applied on the 3DUS data [8]. The latter method
makes bone detection less dependent on the intensity values
and the configuration of the ultrasound machine.
CT-US registration of bone anatomy can be generally catego-
rized into feature- and intensity-based approaches. Feature-
based approaches are commonly performing point-based
registration between the bone surface extracted from 3DUS
and CT, using the Iterative-Closest-Point (ICP) algorithm [4]
or comparable methods. In [2], the manually delineated US
bone surface was registered to CT, with a simultaneous
optimization of calibration parameters. In a similar way Beek
et al. [3] performed the registration for scaphoid fixation
assisted by intra-operative tracked US. In [1], the US surface
was registered to a surface instantiation from a Statistical-
Shape-Model (SSM) of hip or femur bones in order to
alleviate the need for a pre-operative CT.
Intensity-based approaches include the work in [14], where
an intermediate image representation is registered in form of
a bone probability map extracted from both CT and US. In
Wein et al. [16], US was simulated from CT and registered
with a new similarity measure denoted LC2. In [12], the
LC2 similarity measure was utilized for the registration of
a SSM of the lumbar spine. Subsequently, the approach was
refined in [11] with biomechanical constraints in a group-
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wise registration framework. It should be noted that intensity-
based registration methods require a good initialization in
order to not get trapped in local minima far away from the
desired optimum.
In this work, the US bone detection and registration is viewed
as an inter-dependent process, providing: 1) fully automatic
and accurate US bone detection and 2) good initialization
for intensity-based registration methods.

III. METHOD

A. Pre-alignment and Initialization Workflow

The partial visibility of the bone surface in ultrasound
makes an adequate initialization for any registration method
necessary, which is also true for our joint detection-
registration approach. Since our approach incrementally reg-
isters US and CT during acquisition, we require only a
rough initialization in the beginning, which basically aims
at determining the main body axes. In the case of femur, we
estimate the long axis of the bone in cranial-caudal direction
and the rotation around this axis. To this end, we propose
a quick and easy procedure which can be easily integrated
into the surgical workflow. Our initialization workflow is
based on three points [cp1, cp2, cp3], which we refer to
as correspondence points (CP), where [cp1, cp3] define the
principle axis and cp2 the rotation/orientation of the bone
(Fig. 1a). While the pre-operatively acquired CT-dataset can
be labeled manually or via a comparison with a pre-defined
atlas model before the intervention, the points for the US
can be defined at the beginning of the surgery by placing the
tracked US-transducer at roughly the same spots as in the CT.
These correspondence points are then pre-aligned (Fig. 1b)
using an arbitrary point-based registration method. In this
work, we use Umeyama’s method [15], which accounts for
obligatory differences between both point sets by calculating
a least-squares estimate of the required transformation from
US to CT.

B. Joint Registration and Detection

After pre-aligning the CT and the world coordinate sys-
tems using the proposed initialization workflow, the ac-
quisition of ultrasound data begins. For the first acquired
US slice, our algorithm assumes that the bone boundary is
clearly visible and approximately in the image center. Again,
this requirement can be easily integrated into the surgical
workflow by letting the physician place the US transducer
accordingly when starting the acquisition. In practice, and as
we also experienced in experiments on several volunteers, it
is easy and quick to initially place the transducer in this way,
e.g. by positioning the transducer in the middle of the upper
leg and adjusting the transducer pose such that the femur
boundary appears in the image center.
In our joint registration-detection approach (Fig. 2), we
focus on the bright appearance of the bone surface. The
registration step of our approach is patient-specific and
model-based, for which we pre-operatively generate a well-
defined segmentation of the femur from CT. In this work,
a state-of-the-art semi-automatic segmentation approach was

Registration

Detection

Gaussian Weighting 

Intensity Thresholding 

Selection of N brightest pixels

Morphological Opening/Closing

Connected Components

Cloud Selection

Filter Combination (CT + FP)

B-Spline-Fit

ICP Refinement

 rerun
 prev. 
slices

Fig. 2. Overview of the proposed joint registration and detection algorithm.

used, namely random walks segmentation [7]. Alternatively,
fully automatic approaches can be used, such as [10], which
demonstrated good accuracy for the femur.
In the US bone detection step, we can exploit the pre-
operative bone model from CT by excluding unlikely bone
regions in the US images through intensity weighting. Fol-
lowing our proposed acquisition workflow, the bone surface
is initially expected to be at the image center, therefore a
two-dimensional ellipsoidal Gaussian function with a peak
at the image center is applied for the first detection.

In order to detect US pixels belonging to the bone surface
and suppress surrounding structures, the B-mode intensities
are adaptively thresholded before selecting the n = 5 bright-
est pixel per scanline1, similar to the approach of Kowal et
al. [13]. Since the bone surface appears as a connected ridge,
morphological closing and opening remove outliers. Next, a
connected components approach is used for binding pixels
into groups, which Kowal et al. refer to as clouds [13]. The
selection of clouds representing the bone surface or at least
parts of it is done via determination of the cloud including the
highest sum of intensities. Finally, m = 7 points distributed
equally along the x-axis and at their respective ridge centers
are selected, which then form support points of a cubic B-
spline smoothing the detection.

The subsequent registration is based on the detected US
bone contours, which are fitted to the bone model from CT.
For surface-to-surface registration, we used ICP [4] with
multiple initializations for increased robustness, since ICP
snaps directly to the closest points and may thus get stuck
in local minima. Therefore, a grid-search approach is applied

1Scanline refers to the direction of ultrasound waves outgoing from the
transducer. In case of a linear transducer, the scanlines would be the columns
of the image matrix.

2665



pre-op. CT intra-op. US

Pre-Registration

(b)

Labeling

(a)

+

+

+

+

+ +

Joint Registration-Detection

(c)

Fig. 1. Overview of the proposed workflow, (a) shows the labeling of the correspondence points in both modalities, (b) the pre-alignment towards
point-based registration and (c) the combined registration and bone detection approach in ultrasound.

in which the initial position of the surface is varied in rotation
and translation (Fig. 1c) while selecting the registration with
the lowest mean square distance from the CT surface as
reference.
Given the assumption that a continuous sweep is acquired,
relatively small differences in the location of the contour can
be expected. Therefore, in all acquired US images after the
first detection, a combination of the previously detected con-
tour and the registered CT-bone is used to weight intensities
and suppress surrounding tissue responses (Fig. 1c). This
is implemented through a distance-based weighting filter f ,
defined as:

f(x, ∂C) =


1−d(x)

r , if x ∈ C and d(x) < r

1, if x ∈ ∂C
0, otherwise

(1)

d(x) = min‖x− x̂‖ , x̂ ∈ ∂C (2)

where x is a point in the US image domain C, and ∂C a
contour set. Subsequently, both previous detection and CT
prior are combined as:

g(x) = f(x, ∂Ui−1) + f(x, ∂S) (3)

where ∂Ui−1 is the contour in the previously detected US
image Ui−1, and ∂S = Ui ∩ S(T ), i.e., the contour from
intersecting Ui with the CT surface S, given the estimated
rigid registration pose Ti−1 ∈ R4,4. Contour points that are
likely to be located in shadow regions are removed from ∂S.
Specifically, the intersection image plane is sampled from
top-to-bottom, based on the transducer orientation, and only
the first contour points identified along each scanline are
retained.

IV. RESULTS

For the evaluation, CT and 3D freehand US data were
acquired from a femur in a cadaver study, following all
ethical guidelines. The US was acquired using a Siemens
X150 ultrasound machine with a VF-105 transducer that
was tracked with an NDI Aurora magnetic tracking system.
The acquired images had a resolution of 1024× 768 and an
isotropic pixel spacing of 0.102 × 0.102mm. The CT was
acquired with a Phillips Brilliance 64 system and a voxel

spacing of 0.63 × 0.63 × 0.5mm. Subsequently, the femur
was segmented and the surface extracted.
We compared our automatic bone detection approach against
a manual delineation of the bone surface using a total of
384 US images. The robustness of the algorithm was tested
towards variation in translation and rotation of the correspon-
dence points for the ultrasound scan. More specifically, cp1
and cp3 were shifted randomly in x-,y- and z-direction for a
maximum length of 20mm while cp2 was randomly rotated
around the long axis spanned by cp1 and cp3 for a maximum
of ±30 degree, for a total of 44 random trials. We used
the root mean square distance (RMSD) between the manual
and automatic bone delineation as error measurement in our
experiments. The results are presented in Fig. 3, exemplary
detections are shown in Fig. 4. The low mean of 0.38mm and
standard deviation of 0.83mm indicate a highly accurate and
robust detection for a large number of images. To evaluate the
registration accuracy a manual reference registration was per-
formed between the acquired 3DUS and CT. Subsequently,
the RMSD was evaluated between the manual reference and
the ICP-based registration. The resulting error (in RMSD
[mm]) was: µ = 11.2, σ = 8.4, min = 1.37, max = 42.5.
These results are not surprising given the view-dependency
and US specific artifacts that cause partial-only visibility of
the bone surface. Moreover, the largest part of the RMS
distance is contributed by deviation along the long femur
axis, which is again not surprising since the bone surface is
smooth and provides little salient surface features between
joints, where the largest part of our data sweep was acquired.
Nevertheless, the accuracy is sufficient enough to provide a
good initialization for more sophisticated feature-/intensity-
based approaches (see related work) which can deliver the
necessary accuracy required in the clinical scenario.
The bone detection was implemented in C++ using OpenCV
and requires 20− 30ms for a single frame on an Intel Core
i7 3.4 GHz, while the workflow procedure and registration
was implemented with Matlab.

V. DISCUSSION AND OUTLOOK

In this paper, an automatic approach for bone detection
in 3D freehand US was presented. For the initialization of
the registration, we proposed an easy and quickly executable
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Fig. 3. Evaluation of bone detection for random study. Left image without
outlier-experiment and right image with all random experiments. In both
cases 0.7% of the study set was marked as outliers in the box-plots.
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Fig. 4. Detection of bone surface, (a) and (c) showing the result of the
automatic detection (red) and the manual delineated ground truth (green)
for clearly visible (a) and artefacted (c) bone surfaces and the matching
filters (b) and (d) combining the previous detection with the current CT-
registration.

workflow based on three correspondence points defining the
principle axis and orientation of the bone in both modali-
ties. The joint registration-detection approach yields highly
accurate bone surface detection in US, has proven to be
robust even for noisy images. Limitations mainly lie in the
registration step, which is currently only relying on distance-
based surface-to-surface matching, which can fail if the bone
shape does not feature enough salient geometric features, e.g.
along the long axis of the femur bone. It can be expected
that multiple sweeps containing various views and including
distinguishing shape regions such as the knee joint would
increase the confidence of the registration, possibly to the
point of reaching the desired accuracy for surgery.

However, our experiments show that registration is accu-
rate and quick enough to serve as a very good initialization

of further refining registration steps, e.g. with intensity-based
approaches, and is thus complementary to the current state-
of-the-art. Our future work includes the evaluation of the
joint detection-registration for multiple views as well as
the detection of multiple bones in one ultrasound sweep.
Furthermore, we aim at analyzing the clinical applicability
of the proposed initialization workflow under simulated and
real-life OR conditions.
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