
  

 

Abstract— Digital Image Elasto-Tomography (DIET) is a 

novel elastic contrast based breast imaging method using time-

harmonic motion data obtained from a calibrated array of high 

resolution digital cameras scanning the tissue surface.  The 

method is currently undergoing initial clinical testing and 

preliminary results in cases of malignant breast tumors are 

now available.  The method has proved capable of detecting 

and localizing the stiff lesions within the heterogeneous tissue 

structure of the beast through the use of an evolution based 

optimization algorithm implemented in linear finite elements.  

The method has also proved successful at detecting both 

inclusion and non-inclusion cases in specially constructed tissue 

mimicking silicon phantoms. 

I. INTRODUCTION 

Breast cancer detection and diagnosis has been a 
longstanding objective for elastographic imaging modalities, 
including Ultrasound Elastography (UE) [1] [2] and 
Magnetic Resonance Elastography (MRE) [3] [4] [5],  and 
the high elastic contrast between healthy and malignant 
tissues these methods seek to exploit has been carefully 
studied in ex-vivo experiments [6].  Digital Image Elasto-
Tomography (DIET) was developed in an effort to capitalize 
on rapid improvements in digital imaging technology as a 
way of mitigating cost in elastographic imaging systems for 
breast cancer screening.  The method is based on data 
obtained from a synchronized and calibrated digital camera 
array able to capture the steady-state motion pattern on the 
breast surface as it undergoes time harmonic vibration [7]. 
This information is then processed by a sophisticated image 
reconstruction algorithm based on genetically encoded 
optimization implemented in linear elastic finite elements [8]. 
The result is an estimate of the location and size of any 
significantly stiff lesions found within the breast, which 
could be used for further diagnostic evaluation.  Some 
validation work has already been completed for the DIET 
method using homogeneous and heterogeneous silicon 
phantoms [9].  Further work has now been completed in 
specially fabricated homogeneous and heterogeneous tissue 
mimicking breast phantoms, which shows the method is 
capable of distinguishing stiff lesions within a heterogeneous 
background as well as differentiating cases with no 
significantly stiff inclusions. 
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II. METHODS 

A. Motion Imaging 

DIET motion data was captured using a prototype clinical 
imaging system consisting of 5 digital camera units calibrated 
for 3D registration and synchronized through stroboscopic 
illumination [10] as shown in Figure 1. 

Motion data was captured from the breast surface by 
tracking a distribution of hundreds of fiducial markers (made 
of colored paper) applied to the breast surface before the 
examination [11].  The amplitude and phase of the elliptical 
motion path for each fiducial are computed based on the trace 
of the fiducial position through several points along the 
steady-state, time harmonic vibration. An example of the 
resulting elliptical motion paths of fiducial markers across the 
breast surface for one imaging case is shown in Figure 2. 

B. Inclusion Localization 

The localization and size estimation of stiff lesions within 
the breast is achieved through minimization of a motion 
based objective function, Φ, measuring the error between the 
measured displacement field about the breast surface, u
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Figure 1: An Early DIET Prototype showing the 

camera arrangement, the vertical actuator and the 

ring flash illumination system. 

 
Figure 2: Fiducial motion paths at the breast surface. 
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a set of displacements calculated by linear elastic finite 
element methods, u

C
,  

Φ = ½|| u
C
 ‒ u

M
||

2
.                               (1) 

In other elastography methods, such as UE and MRE, it is 
possible to determine an elastic property distribution 
throughout the tissue volume, E(x), through the solution of 

E(x) = arg min Φ,                               (2) 

through either direct or iterative reconstruction methods [12] 
[13] [14] [15]. 

For the DIET method, the lack of displacement data from 
the breast interior renders the solution of (2) for an arbitrary 
distribution E(x) highly ill-conditioned.  Instead, a 
contradictive reconstruction approach is used, based on a 
shape based property distribution, where Young’s modulus 
values of either EI or EB are assigned based on whether a 
point x lies within an inclusion or within the background, 
respectively [9].  The goal of the optimization problem is 
thus to determine the location and region of the inclusion, 
which can be defined using simplistic geometry such as a 
sphere or ellipsoid.  The contradictive reconstruction 
approach involves assuming that a significantly stiff lesion 
exists within the tissue and allowing the optimization 
algorithm to contradict this assumption by placing the 
location of the inclusion outside the tissue volume, thus 
generating the case where all points x within the tissue are of 
stiffness EB.  For the DIET method, the stiffness value EB is 
considered to be the homogeneous distribution providing the 
best-fit to the measured data according to (1).  The inclusion 
stiffness can either be considered an additional unknown in 
the localization process or be set at a fixed contrast to the 
background modulus, e.g. EI = 10 × EB. 

Even with the improved conditioning of the DIET inverse 
problem by use of this shape based contradictive approach, 
the solution of (2) for the most likely property distribution is 
still not a robust method for the inclusion localization 
problem, and instead a selection of plausible distributions, 
Ei(x), is made based on their probability, p, with 

pi =Π(2πσ
2
)

-½
exp(-1/2σ

2
(u
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)

 2
)              (3) 

for measurement variance, σ.  The final elastic property 
distribution of the DIET method, Eʹ(x), is then calculated by 
averaging the elastic modulus value at each point based on 
the predictions of all the plausible distributions, such that   

Eʹ(x) = (1/M)Σ Ei(x)                                   (4) 

for M plausible distributions.  The size of the lesion can then 
be estimated by the volume of this final distribution having 
stiffness significantly higher than EB. 

C. Evolutionary Optimization 

The limitation of (1) to only include measured 
displacements at the surface of the breast leads to the 
introduction of multiple local minima to the objective 
function, Φ, which can be thought of as a function of all 
plausible elasticity distributions, Φ(E).  Gradient descent 
based minimization of Φ is thus not viable from an arbitrary 
initial estimate for the property distribution, E0(x), as there is 
no guarantee that the global minimum of Φ will be found.  To 
avoid this pitfall, a genetic algorithm is implemented to 

search for suitable distributions, Ei(x), minimizing Φ(E) and 
thus possessing a significant likelihood, pi, of being the true 
elastic property distribution within the tissue.  The genetic 
algorithm is implemented by encoding the shape based 
material property description for a population of N 
distributions, E

j
(x) (x), j = 1,2,3,…,N, which are gradually 

modified through mating and mutation processes through 
repeating generations, with natural selection enforced on the 
population based on a fitness, F

j
, evaluated for each member 

of the population through the use of (1), such that  

F
j
 = Φ(E

j
).                                     (5) 

This process continues until a significant portion of the 
population evolves to have an identical distribution, in the 
case of a convergent solution, or until a certain number of 
generations have passed without convergence.  The starting 
point for the genetic algorithm is a population of distributions 
each containing a single inclusion at a randomly distributed 
location within the breast.     

D.  Multi-Frequency Imaging  

To further improve the conditioning of the inverse 

problem for inclusion localization in DIET, multiple data 

sets are obtained across a range of frequencies, k, for each 

imaging case.  For the optimization process, a unique 

background stiffness, EB,k, is determined for each frequency 

and the overall motion error for the imaging case is 

calculated by combining the objective functions for each 

individual frequency Φk = Φ(Ek), normalized by a relative 

measurement variance which accounts for differences 

between motion amplitudes and measurement accuracies 

between the different frequencies. 

III. RESULTS 

Presented here are a variety of results from the DIET 
method, achieved both in in-vivo clinical experiments and in-
vitro phantom experiments using specialized, tissue-
mimicking silicon phantoms. 

TABLE I.  PHANTOM RESULTS 

Phantom 
Lesion Localization Results 

Volume Fraction [%] Centroid Distance [mm] 

P5 183 19 

P10 22 12 

A.  Phantom Results 

To help validate the capability of the DIET method to 
detect and localize lesions of known location and size, a 
series of specialized silicon phantoms were constructed, 
including a homogeneous healthy example, P0, and two 
tumor cases, P5 and P10, with stiff inclusions of 5 mm and 10 
mm radius, respectively.  Data was taken at a range of 
frequencies from 10 – 40 Hz. Results from the two tumor 
cases are given in Table 1, where the volume fraction reports 
the relative volume of the localized lesion as a percentage of 
the volume of the actual inclusion while the centroid distance 
indicates the absolute distance between the centroid of the 
localized lesion and that of the actual inclusion. The shape 
based reconstruction model in these cases was defined as a 
spherical inclusion of radius 5 mm with EI = 30 kPa. 
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Figures 3 – 5 give a graphical representation of the lesion 
localization results for the 3 phantoms, showing the final 
elastic property distribution calculated by the DIET method 

via (4).  For phantoms P5 and P10, the actual inclusion size 
and location is indicated by a white sphere. The effectiveness 
of the contradictive reconstruction approach is demonstrated 
in Figure 3, where no region with significant elastic contrast 
is found to have a high probability of existing within the 
imaging volume. 

B. In-Vivo Results 

Three cases of cancerous tumors, C1, C2 and C3, were 
imaged with the DIET system.  The tumors were detected 
and classified through traditional mammographic and 
ultrasound methods, with their approximate location and size 
recorded in Table 2.  Lesion localization was performed for 
each case using a range of frequencies between 15 – 50 Hz. 
Again, the shape based reconstruction model in these cases 
was a spherical inclusion of radius 5 mm with EI = 30 kPa.  

TABLE II.  IN-VIVO CASE DATA 

Case 

Tumor description based on mammography 

and ultrasound evaluation 

Radius [mm] Location [hr:min] 

C1 5.5 10:30 

C2 15 1:30 

C3 17.5 3:00 

 

Table 3 reports the results from the three tumor cases, where 
the centroid distance information could not be calculated as 
the exact tumor position, in the geometry of the DIET 
imaging system, was unknown. 

TABLE III.  IN-VIVO RESULTS 

Case 
Lesion Localization Results 

Volume Fraction [%] 

C1 112 

C2 8 

C3 54 

 

Figures 6 – 8 give a graphical representation of the lesion 
localization results for the 3 in-vivo tumor cases. 

 
Figure 3:  The calculated elastic property distribution 

within phantom P0.  

 
Figure 4:  The calculated elastic property distribution 

within phantom P5.  

 
Figure 5:  The calculated elastic property distribution 

within phantom P10.  

 
Figure 6:  The calculated elastic property distribution 

within in-vivo tumor case C1.  
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IV. CONCLUSION 

In general, the DIET lesion localization problem was 

capable of correctly identifying the location of high contrast 

stiff regions within both phantom and in-vivo breast tumor 

cases.  Using the contradictive reconstruction approach, the 

method was also able to distinguish the healthy case from 

the two inclusion cases in the silicon phantom experiments.  

The accuracy of the size estimation of the various lesions in 

both phantom and in-vivo cases varied, and was somewhat 

dependant on the agreement between the actual size of the 

lesion and that used in the shape based reconstruction 

process.  Overall, the method shows promise in the 

application to breast cancer lesion localization and detection, 

although certainly much work in development and validation 

remains to be done. 
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Figure 7:  The calculated elastic property distribution 

within in-vivo tumor case C2.  

 
Figure 8:  The calculated elastic property distribution 

within in-vivo tumor case C3.  
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