
  

 

Abstract— The electromyogram (EMG) signal has been used 

as the command input to myoelectric prostheses. A common 

control scheme is based on classifying the EMG signals from 

multiple electrodes into one of several distinct classes of user 

intent/function. In this work, we investigated the use of EMG 

whitening as a preprocessing step to EMG pattern recognition. 

Whitening is known to decorrelate the EMG signal, with 

improved performance shown in the related applications of 

EMG amplitude estimation and EMG-torque processing. We 

reanalyzed the EMG signals recorded from 10 electrodes 

placed circumferentially around the forearm of 10 intact 

subjects and 5 amputees. The coefficient of variation of two 

time-domain features—mean absolute value and signal 

length—was significantly reduced after whitening. Pre-

whitened classification models using these features, along with 

autoregressive power spectrum coefficients, added 

approximately five percentage points to their classification 

accuracy. Improvement was best using smaller window 

durations (<100 ms).  

I. INTRODUCTION 

Traditional myoelectric-controlled upper limb prostheses 
provide one degree of freedom of proportional control, often 
by subtracting the EMG amplitudes of an antagonist pair of 
muscles. The amputee uses manual mode switches to cycle 
between distinct functions (e.g., hand-wrist-elbow) in order 
to sequentially control different devices [1], [2]. More natural 
control of multiple degrees of freedom is greatly desired by 
below-elbow amputees [3]. One emerging method for such 
advanced control is based on EMG pattern recognition [1], 
[4]–[9]. A window (“epoch”) of data from multiple 
electrodes is used to discriminate between a set of distinct 
hand/wrist/elbow actions. For continuous control, 
classification can be performed on the EMG signal stream at 
a periodic rate. 

Pattern recognition consists of the sequential steps of 
EMG signal conditioning/ preprocessing, feature extraction, 
dimension reduction and pattern classification. Classification 
errors are due both to a systematic component (e.g., inability 
of the available features to distinguish all investigated 
motions) and a random component. In the related areas of 
EMG amplitude estimation and EMG-torque modeling, 
whitening has been shown to reduce the variation (i.e., 
random component) in the EMG signal and improve 
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performance [10], [11]. Physiologically, whitening may 
counteract, in part, the lowpass filter effect imposed on the 
signal as it propagates from its origin along the muscle fiber 
membranes; through intervening muscle, fat and skin; before 
being recorded at the electrodes. From a stochastic 
processing standpoint, whitening temporally decorrelates the 
EMG signal, increasing the effective number of signal 
samples (a.k.a., statistical degrees of freedom), which reduces 
the variance in the amplitude estimate. Thus, we 
hypothesized that pre-whitening of the EMG signal would 
reduce the random variation of the EMG features used in 
classification, resulting in improved classification 
performance. This effect should be more evident at small 
window durations, since classification accuracy already 
approaches 100% when long epoch lengths are used. A 
preliminary report of this work appeared in [12]. 

II. METHODS 

A. Experimental Methods 

Data from two prior experiments with similar protocols 
were available for reanalysis. The reanalysis was approved 
and supervised by the WPI IRB. The original data collection 
was approved by the human studies boards of the respective 
institutions and written informed consent was received from 
each subject. Data from ten intact-limbed subjects were 
collected at the University of New Brunswick [5]. Data from 
five unilateral transradial amputees were collected at the 
Rehabilitation Institute of Chicago [6]. Distinct EMG 
acquisition systems were available at each site. In each case, 
ten disposable bipolar electrodes (3M Duotrode for intacts; 
Noraxon 1.25cm diameter Ag/AgCl for amputees) were 
secured about the circumference of the proximal forearm, 
oriented along the presumed direction of action potential 
conduction. EMG data were bandpass filtered (30–350 Hz 
for intacts; 5–400 Hz for amputees) and sampled at 1000 Hz. 

Subjects completed two repetitions of eight trials. Each 
trial was initiated and terminated at rest with the subject’s 
elbow supported on an armrest. Each trial was comprised of 
the sequential performance (or, for amputees, attempted 
performance) of 11 motion classes: 1, 2) wrist 
pronation/supination; 3, 4) wrist flexion/extension; 5) hand 
open; 6) key grip; 7) chuck grip; 8) power grip; 9) fine pinch 
grip; 10) tool grip; and 11) no motion. Each motion within a 
trial was maintained for 4 s, and the subject returned to the 
rest posture for a specified inter-motion delay period. Trials 
1–4 used an inter-motion delay of 3, 2, 1 and 0 s respectively, 
and trials 5–8 used an inter-motion delay of 2 s. A minimum 
of two minutes rest was given between trials.  

Whitening of the Electromyogram for Improved Classification 

Accuracy in Prosthesis Control 

Lukai Liu, Pu Liu, Edward A. Clancy, Senior Member, IEEE, Erik Scheme, Student Member, IEEE 

and Kevin B. Englehart, Senior Member, IEEE 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

2627978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

B. Computation of EMG Features 

 The inter-motion delay portions of the data were removed, 
leaving epochs 4 s in duration. Each epoch was notch filtered 
at the power line frequency and each of its harmonics. When 
whitening was desired, each epoch was highpass filtered at 
15 Hz, then adaptively whitened using the algorithm of [10], 
[13]. This algorithm initially whitens the complete signal 
(EMG signal plus noise) based on an estimate of the noise-
free spectrum of the EMG signal. Unfortunately, this fixed 
filter also accentuates the high-frequency portion of the noise 
spectrum. Hence, an adaptive Weiner filter (optimal linear 
filter to attenuate additive noise) is cascaded after the fixed 
whitening filter. This filter adapts its shape based on the 
spectra of the background noise and the EMG signal. The 
EMG signal spectrum is amplitude modulated with muscle 
effort, while the background noise spectrum is fixed. In 
practice, the Weiner filter is lowpass in shape, with a higher 
cutoff location occurring when muscle effort is high. 
Adaptive whitening requires calibration to a rest and an 
active contraction, for each electrode. The “no motion” class 
was used as the rest contraction. One active class was 
manually selected per electrode per subject, corresponding to 
the class with the largest EMG amplitude. After this filtering, 
the first and last 0.5 seconds of the epoch were discarded, to 
account for filter start-up transients. 

 Features were then extracted from each trimmed (3 s) 
epoch by segregating the epoch into contiguous windows. 
The following window durations were investigated: N = 25, 
50, 75, 100, 150, 200, 250 and 300 ms. The time-domain 

feature set consisted of the three features: mean absolute 
value (MAV), average signal length (SL) and normalized 
zero crossing rate (ZC) (see [4] for definitions). Our ZC 
feature used a noise threshold of approximately 1/6th the 
average RMS value of the “no motion” class. The frequency-
domain feature set consisted of the coefficients of a seventh-
order autoregressive (AR) model [8], [14]. The “combined” 
feature set used the AR coefficients along with MAV. 

C. Analysis of Coefficient of Variation of EMG Features 

Since the mechanism of improvement due to signal 
whitening is hypothesized to be a reduction in the variation 
of feature values, we computed the coefficient of variation 
(CoV) of the features. We limited this analysis to the three 
time-domain features. For each electrode for each subject, we 
identified two classes with the largest EMG amplitudes. The 
CoV was computed for each epoch as the standard deviation 
of the features divided by their mean. Low amplitude 
recordings were avoided, since the CoV calculation is erratic 
when the mean feature value and its standard deviation are 
both small numbers. These CoV values were averaged across 
the two selected trials and across all subjects. Results were 
computed both with and without whitening, separately for 
intact-limbed subjects and amputees, and for each window 
duration N. Thereafter, a modified power decay model was fit 

to the mean values, using the model: NbaN /]CoV[  . 

Lower CoV values denote less variability in the features.  

 

 
 

Fig. 1.  Average coefficient of variation (plus or minus one standard error) for the time-domain features from ten intact and (separately) five amputee 

subjects, with and without whitening. Lines show fit to the model: NbaN /]CoV[  . Scale of y-axis differs for normalized zero crossing rate. Sample 

size is 100 for intact subjects, 50 for amputee subjects. 
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D. Analysis of Classification Performance 

Linear discriminant classification was used with an 
exhaustive search over all possible electrode combinations. 
For ten electrode channels, there were 1023 possible 
electrode combinations evaluated. Both repetitions of data 
trials 1–4 were used for training and both repetitions of data 
trials 5–8 were used for testing. The results from the best test 
result per subject are reported. The entire analysis was 
repeated using a preselected set of six electrodes spread 
evenly about the circumference of the forearm. For six 
electrode channels, there were 63 possible electrode 
combinations evaluated. The analysis was repeated again 
using only a preselected set of nine motion classes (classes 1–
8 and 11); and again using a preselected set of seven motion 
classes (classes 1–5, 8 and 11). Results for intact-limbed 
subjects and amputees are reported separately for each of the 
window durations. 

III. RESULTS 

Fig. 1 shows the average plus/minus standard error CoV 
results for the three time-domain features, with and without 
whitening, plotted separately for intact-limbed and amputee 
subjects. Whitening substantially reduced feature variation at 
all window durations for the MAV and SL features. There 
was rather limited affect due to whitening for the ZC feature. 
The CoV values were lower in the intact-limbed subjects. All 
plots fit well to the offset power law model. 

Classification accuracy results were higher when the 
number of EMG channels was larger and when the number of 
motion classes was lower. Thus, results will only be 
presented for the best (10-channel, 7-motion) and worst (6-
channel, 11-motion) combination. Fig. 2 shows the across-
subject average classification accuracy for these channel-
motion combinations, with and without whitening, for each 
of the three feature sets (time-domain, frequency-domain and 
combined), plotted separately for intact-limbed and amputee 
subjects. Whitening provided a consistent increase in 
performance. At low window durations, the performance 
increase is as much as five percent. The “combined” feature 
set (AR coefficients along with MAV) consistently provided 
the highest average classification accuracy. Accuracy was 
higher in the intact-limbed subjects than in the amputees. 

IV. DISCUSSION 

Although signal whitening methods have been available 
for several years, they do not seem to have been applied to 
the EMG pattern recognition problem. When computing 
EMG MAV, the signal to noise ratio (SNR) of the amplitude 
estimate has been shown to increase with window duration in 
a square root fashion [15], with whitening improving the 
SNR. Since CoV is defined as the reciprocal of the SNR, it 
follows that the CoV of the MAV feature should decrease 
with window length as the reciprocal of a square root; thus 
our use of the power law model for fitting to the CoV values. 
Further, whitened MAV features should have lower CoV 
values than unwhitened MAV features. We found, however, 
that an offset term was needed in the power law model in 

 
 

Fig. 2.  Exhaustive selection average classification accuracies from ten intact (left) and five amputee (right) subjects for each of the three feature sets, with 

and without whitening. The motion-channel combinations shown represent the lowest accuracies (fewest channels and most motion classes) and highest 

(most channels and fewest classes). Window durations vary from 25 to 300 ms. Note the different y-axis scale for each plot. 
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order to achieve an acceptable fit (Fig. 1). Manual inspection 
of the epochs used to calculate the CoV showed that many 
subjects did not maintain a constant effort level across the 3 s 
used to form features. If the feature values are changing 
within a 3 s epoch, then a larger sample standard deviation 
will be found for that mean feature value. A larger CoV 
estimate will result. The inflated MAV CoV values fit better 
to a power law model that included an offset term than to the 
theoretically expected model that is absent an offset. 

Although not described here, analytic and simulation 
analysis also predicted an inverse square root relationship 
with window duration for the SL and ZC features. Fig.1 
shows that the SL feature also required substantial offset 
values in the power law fit, but the ZC feature did not. As 
effort varied within an epoch, the CoV of the SL feature 
would be expected to inflate, again due to the increased 
within-epoch variance. But, zero crossings are not 
substantially influenced by modulations in EMG amplitude 
within an epoch—so long as the EMG amplitude remains 
above the noise floor. Hence, the ZC features exhibited the 
lowest overall CoV values (and the lowest standard errors). 

One would expect much lower CoV values for the MAV 
and SL features if the subject contractions were held more 
constant. However, acquisition of such data is only relevant 
to this intermediate evaluation of CoV. For training 
classifiers, it is better to collect data with the full range of 
within-epoch modulation that is representative of actual 
prosthesis control use. The classifier will then optimize for 
that realistic condition. 

Regardless of this inter-epoch modulation concern, 
whitening decreased the CoV, making the features more 
repeatable. As shown in Fig. 2, an improvement in 
classification accuracy resulted. The improvement was most 
prominent at the shorter window durations. This result was 
expected, since classification performance increases towards 
100% at the longer window durations. No further increase is 
possible. 

V. CONCLUSION 

We investigated whitening as a preprocessing step to 

EMG pattern recognition in intact-limb and amputee 

subjects. Whitening was shown to decrease the average CoV 

for MAV and SL features, with less influence on the ZC 

feature. Whitening was shown to consistently improve the 

average classification accuracy when distinguishing up to 11 

distinct motion classes using up to 10 different electrodes. 

Improvement due to whitening was also found using fewer 

motion classes and fewer electrode channels. 
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