
Low-cost intracortical spiking recordings compression with classification
abilities for implanted BMI devices

Bertrand Coppa1, Rodolphe Héliot1, Olivier Michel2, Eric Moisan2 and Dominique David1

Abstract— Within Brain-Machine Interface systems, corti-
cally implanted microelectrode arrays and associated hardware
have a low power budget for data sampling, processing and
transmission. It is already possible to reduce neural data rates
by on-site spike detection; we propose a method to further
compress spiking data at a low computational cost, with the
objective of maintaining clustering and classification abilities.
The method relies on random binary vector projections, and
simulations show that it is possible to achieve a compression
ratio of 5 at virtually no cost in terms of classification errors.

Index Terms— Random embeddings; Compressive Sensing;
Neural signal clustering

I. INTRODUCTION

Brain-Machine Interfaces (BMI) aim at establishing a
direct communication pathway between the brain and an
external actuator, such as computer cursor or a robotic
device [1–3]. Potential applications include the restoration
of sensorimotor functions for patients suffering from spinal
cord injuries, stroke, and other neurological disorders [4]. To
this aim, a BMI system generally embeds four components:
a recording device capturing neurophysiological signals from
the brain, a decoding algorithm converting these signals into
a variable representing an action to be performed, an actuator,
and a feedback provided to the user. Cortically implanted
microelectrode arrays allow to collect spiking data from
neural ensembles, thus allowing to control external devices
with great accuracy. Single unit and multi-unit activity are
recorded on each electrode, meaning that the activity of each
recording site must be sorted in real-time to be used in a BMI
paradigm [5]. In the end, units with a clearly distinguishable
waveform are isolated and clustered.

Intracortical neural activity is typically recorded using
sampling frequencies between 30 kHz and 50 kHz. Since the
number of channels can be high as well (128 or more elec-
trodes), this generates large amounts of data to be processed
in real time. For embedded or implanted systems, transmit-
ting this data in real time would require a huge wireless band-
width, in the order of hundreds of Mbits/sec. Thus, data must
be compressed before transmission; however, due to very
low power budget, there is a need for a low computational
cost compression technique and associated hardware. Spike
detection addresses the problem of data reduction: there
are algorithms that allow real-time adaptive discrimination

1B. Coppa, R. Héliot and D. David are with CEA-LETI, Minatec Campus,
Grenoble, France. {bertrand.coppa,rodolphe.heliot,
dominique.david} at cea.fr

2O. Michel and E. Moisan are with GIPSA-Lab, University
of Grenoble, France. {olivier.michel, eric.moisan} at
grenoble-inp.fr

threshold and spike detection [6]. Yet, more compression is
possible at a low computational cost: Compressive Sensing
(CS) has been known to allow simple data compression at the
cost of expensive decompression [7–10] under the hypothesis
that there exists a (known) sparse representation of the data.

The principle of CS is to project data on few vectors
that collect the information. Random vectors usually work
well for any kind of signal [11]. This projection on random
vectors is similar to dimensionality reduction techniques
proposed by [12–15], where the final objective is cluster-
ing. Indeed, as stated earlier, spikes clustering is generally
performed after data acquisition within a BMI setup, in
order to determine which neuron fired the detected spike.
We propose here a simple compression method, inspired by
CS, using only binary operations within the embedded or
implanted system, to compress the detected spikes. Section
II describes the experimental dataset and the compression
method; section III presents classification results, followed
by a discussion.

II. MATERIAL AND METHODS

A. Dataset

In this paper, we used simulated neural data made publicly
available by the authors of [16]. The background noise is
simulated using spikes shapes from a database of around
600 recorded and averaged spike shapes, set at random times
and amplitudes. A train of data from 3 spike shapes is
then superimposed with normalized amplitude. The noise
variance is scaled to various values relative to the normalized
amplitude of the spike trains. The data are simulated at 96
kHz and interpolated so that spikes are set continuously (to
machine precision) in time. This allows to generate spikes
at arbitrary starting time (not necessarily matching a sample
time). It was then down-sampled to 24 kHz to imitate actual
recording conditions. More information is available in [16].

The data is available in the form of a 10-seconds-long
simulated signal containing 507 spikes, of which figure 1
show an excerpt with highlighted spikes. The location and
cluster class of the spikes in the train of data are available.
The data also provides synchronized spike traces as shown
on figure 2.

A Principal Component Analysis (PCA) of the spike traces
allows to distinguish three well-separated clusters (fig. 3) on
the first two components of the PC, providing a basis for
classification purposes. The k-means algorithm is often used
for classification (see section II-B.2).

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

2623978-1-4577-1787-1/12/$26.00 ©2012 IEEE

3.655 3.66 3.665 3.67 3.675 3.68 3.685 3.69

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

Fig. 1. Excerpt of simulated raw data, sampled at 24 kHz, where the data
spikes are shown in bold and colored as per cluster class.

5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Samples (24kHz)

Fig. 2. Synchronized and superimposed spikes, with color scheme
corresponding to attributed cluster class.

−2 −1 0 1 2 3 4

−1.5

−1

−0.5

0

0.5

1

PC1

P
C

2

Fig. 3. Projection on first two principal components of the spikes, with
color corresponding to the attributed cluster class.

B. Methods

1) Compression: The principle of CS is simple, as illus-
trated by figure 4: given a signal x ∈ RN and a m × N ,
m < N matrix Φ, the compressed signal is Φx.

In our particular situation, the signal is a digitally sampled,
quantified version of the real signal. The matrix Φ is a
binary Plus Minus One matrix, built randomly with iid matrix
elements. The probability for each state (±1) is 0.5. This
kind of matrix is statistically orthogonal, and even for the
small dimensions considered in this paper, the rows are close
to orthogonal. Using such a binary Plus Minus One matrix
and a binary encoded digital signal (the most frequent case
of encoding) is highly efficient from a computational point
of view, since the projection on the matrix is reduced to

Fig. 4. Illustration of CS principle. The compressed data on the left is
obtained by a projection on a random binary matrix (center) of the signal
(right), here with dimensions m = 4 and N = 32.

simple binary operations: sign switch and addition. As a
consequence, it makes compressive sensing very attractive
for low-power, embedded data compression systems.

2) Classification: Classification is performed using the k-
means algorithm [17]. This is an iterative algorithm that at-
tributes each point to the closest (here, in Euclidean distance)
cluster center, then updates the cluster centers by setting each
to the mean of all points in the cluster, until there is no more
change in the clusters. To automatically initialize the cluster
centers, we used a method inspired by [18]. The principle
is to build a Minimum Spanning Tree (MST): the tree is
initialized to a random point of the set, then sequentially
built by adding the closest (in Euclidean distance) point to
any point already belonging to the tree. The sequence of
distances between each added point and the tree is kept in
memory, and the clusters are chosen by setting a threshold
on those distances. The centers of those clusters are used to
initialize the k-means algorithm.

III. RESULTS

To evaluate the proposed method, we performed simu-
lations on the dataset described in II-A. The experiment
was repeated for multiple m values, each time using 1000
randomly-drawn binary m×N matrices.

A. Clustering Initialization

To initialize the cluster centers, the MST threshold was
set a posteriori to the mean plus one standard deviation of
the distances in the tree, and the minimal cluster size was set
to #S/6, where #S is the number of spikes in the dataset.
This means that a maximum of 6 different clusters were
allowed, which is coherent with physiological recordings
where a maximum number of 4 units is generally observed on
a given channel. Figure 5 shows the distances and threshold
used to identify clusters, and figure 6 show the corresponding
tree displayed on the principal component projection of the
compressed spikes.

B. Classification results

Figure 7 shows the average proportion of misclassified
spikes (over 1000 realisations) as a function of the number

2624

Number of projections m 4 5 6 7 8 9 10 11 12
Compression ratio 8 6.4 5.33 4.57 4 3.56 3.2 2.91 2.67
Average proportion of misclassified spikes 5.09% 2.38% 0.81% 0.48% 0.25% 0.07% 0.03% 0.02% 0.02%
Less than 0.5% misclassified 69.4% 83.1% 91.8% 95.2% 97.6% 98% 99% 99.6% 99.6%
Average number of clusters 2.855 2.934 2.979 2.988 2.994 2.999 3 3 3
Probability of having less than 3 clusters 14.3% 6.6% 2.1% 1.2% 0.6% 0.1% 0% 0% 0%

TABLE I
CLASSIFICATION PERFORMANCE IN FUNCTION OF THE NUMBER OF PROJECTIONS m, N = 32.

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

Point in the tree

D
is

ta
n

c
e

 t
o

 a
d

d
 n

e
w

 p
o

in
t

Fig. 5. Distances to add a new point in the minimum spanning tree, with
a threshold line, and colored groups corresponding to identified clusters.

−5 −4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

PC1

P
C

2

Fig. 6. Minimum spanning tree for the identified clusters.

4 6 8 10 12
0

1

2

3

4

5

6

Number of projections m

M
is

c
la

s
s
if
ie

d
 s

p
ik

e
s
 (

%
)

Fig. 7. Average percentage of misclassified spikes as a function of the
number of projections m, with N = 32.

of projections, from 4 to 12 (i.e. compression ratio from 8
to 2.67). In our example, there are 507 spikes, so 0.02%
corresponds approximately to a single misclassified spike.
The results indicates that for m ≥ 6 (compression ratio
of approximately 5.33), there is in average less than 5
misclassified spikes. For m ≥ 9, there is much less than
one misclassified spike.

Figure 8 shows an example of a good result for a high

−5 −4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

PC1

P
C

2

4 6 8 12
0

20

40

60

80

100

m

Fig. 8. Projection on first two principal components of the compressed
(m = 4, N = 32) spikes, no error in clustering; and proportion of
realisations that do as good as that for m = 4, 6, 8 or 12.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

PC1

P
C

2

4 6 8 12
0

20

40

60

80

100

m

Fig. 9. Projection on first two principal components of the compressed
(m = 4, N = 32) spikes, 7 error in clusterings; and proportion of
realisations that do as good as (or better than) that for m = 4, 6, 8 or
12.

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

PC1

P
C

2

4 6 8 12
0

20

40

60

80

100

m

Fig. 10. Projection on first two principal components of the compressed
(m = 4, N = 32) spikes, missing cluster; and proportion of realisations
that do better than that, for m = 4, 6, 8 or 12.

compression ratio (8): the projection on the principal com-
ponents shows the tree clusters but they are a little less
distinctly separated and a little more scattered compared
to figure 3. Note that PCA is only used for visualization
convenience, and that classification is always performed on
the full compressed data and not only the two principal
components. This is the result in most of the cases, as shown
by table I, line 2, even when m = 4. However, for such
compression ratio, it happens about 3 out of 10 times that
there are errors between two clusters, as shown on figure
9. In most cases (85% of the realisations with errors for

2625

m = 4 and up to 100% for m > 10), misclassification
happens between only two clusters. In the worst cases, two
clusters are mixed as seen on figure 10: this leads to a high
error rate as a full cluster is wrongly classified and each
cluster has approximately one third of the population. This
happens 14.1% of the time in the case of m = 4 and only
in this case does it happen that there was only one cluster
(0.2% of occurrence). With larger m, this happens less and
less often and for m ≥ 10 (compression ratio 3.2), it does
not happen any more. When it happens, in most cases (over
83%), only two clusters are affected but they are still well-
separated from the third. As shown by the right bar-graphs
(fig. 8-10), the perfect result already occurs a lot (except for
the case m = 4), but in the majority of cases, the result is
as good or better than the situation on figure 9.

Table I sums up the classification results. The first line
indicates the proportion of misclassified spikes over the 1000
realisations, as shown in figure 7, while the second line
shows the proportion of realisations where the number of
misclassified spikes is lower than 0.5%, that is, at most 2
errors. Starting from m = 6, it happens with probability
higher than 90%, and the average error rate is less than 1%.
The two last lines deal with the number of clusters, and show
that while it is an occasional issue for high compression
ratios, when m ≥ 10, there is no cluster detection error.

C. Discussion

The results show that the CS-based method has good per-
formance for compressing data while conserving clustering
properties of data. Furthermore, the computational cost of the
compression is only m × N additions. This means that the
higher the compression ratio, the lower the cost, although
this comes at the expense of clustering quality. Choosing
m = 6 (i.e. a compression ratio of 32/6 ≈ 5.33) seems
like a good trade-off between clustering performance and
compression cost. Further clustering improvement induced
by adding more projections (i.e. m > 6) is less significant
than improvements from m = 4 to m = 6. We did not
attempt in this study to fully reconstruct the signal, instead
focusing on clustering capabilities that are of importance in
real-time BMI systems. However, with the projection matrix
dimensions used here (6×32), basic simulations using IRLS
[9] as reconstruction algorithm indicates that it would be
difficult to have a near-perfect reconstruction. One solution
would be to reduce the compression ratio (from 5.33 to 3,
for example), or to seek a representation basis that would
require only one (or few) significant coefficient to represent
a spike.

IV. CONCLUSION

We proposed in this paper a system to compress intracor-
tical spiking signals at a very low computational cost. Rather
than transmitting the full recorded information, compressed
data is transmitted that allows to perform spike classification
without the need for reconstructing the original signal. The

system is based on random binary matrix projections, which
require sign switch and addition only, making the method
very easy to implement. The simulations showed the classifi-
cation results remain very good even when using compressed
data: a compression ratio of 5.33 allows spikes classification
with little to no error. Future work will include the design of
dedicated digital hardware; we plan to design an integrated
circuit implementing the described method in CMOS 65nm
technology, in order to precisely evaluate the area and power
consumption of such a system.

REFERENCES

[1] F Galan, M Nuttin, et al. “A brain-actuated wheelchair : Asyn-
chronous and non-invasive Brain computer interfaces for contin-
uous control of robots”. In: Clinical Neurophysiology 119 (2008),
pp. 2159–2169. DOI: 10.1016/j.clinph.2008.06.001.

[2] G Schalk, K J Miller, et al. “Two-dimensional movement control
using electrocorticographic signals in humans”. In: Journal of neural
Engineering 5 (2008), pp. 75–84. DOI: 10.1088/1741-2560/
5/1/008.

[3] Meel Velliste, Sagi Perel, et al. “Cortical control of a prosthetic arm
for self-feeding”. In: Nature 453.June (2008), pp. 1098–1101. DOI:
10.1038/nature06996.

[4] Leigh R Hochberg, Mijail D Serruya, et al. “Neuronal ensemble
control of prosthetic devices by a human with tetraplegia”. In: Nature
442.July (2006), pp. 164–171. DOI: 10.1038/nature04970.

[5] MS Lewicki. “A review of methods for spike sorting: the detection
and classification of neural action potentials”. In: Network: Compu-
tation in Neural Systems 9.4 (1998), R53–R78.

[6] J.F. Beche, S. Bonnet, et al. “Real-time adaptive discrimination
threshold estimation for embedded neural signals detection”. In:
Neural Engineering, 2009. NER’09. 4th International IEEE/EMBS
Conference on. IEEE. 2009, pp. 597–600.

[7] DL Donoho. “Compressed sensing”. In: IEEE Transactions on
Information Theory 52.4 (2006), pp. 1289–1306.

[8] E. Candes and J. Romberg. “l1-magic: Recovery of sparse signals via
convex programming”. In: California Institute of Technology, Tech.
Rep (2005).

[9] R. Chartrand and W. Yin. “Iteratively reweighted algorithms for
compressive sensing”. In: Proc. Int. Conf. Acoustics, Speech, Signal
Processing (ICASSP). 2008, pp. 3869–3872.

[10] J.A. Tropp and A.C. Gilbert. “Signal recovery from random mea-
surements via orthogonal matching pursuit”. In: IEEE Transactions
on Information Theory 53.12 (2007), p. 4655.

[11] EJ Candes and T. Tao. “Near-optimal signal recovery from random
projections: Universal encoding strategies?” In: IEEE Transactions
on Information Theory 52.12 (2006), pp. 5406–5425.

[12] S. Dasgupta. “Learning mixtures of Gaussians”. In: Foundations of
Computer Science, 1999. 40th Annual Symposium on. 1999, pp. 634
–644. DOI: 10.1109/SFFCS.1999.814639.

[13] S. Dasgupta. “Experiments with random projection”. In: Uncertainty
in Artificial Intelligence: Proceedings of the Sixteenth Conference
(UAI-2000). 2000, pp. 143–151.

[14] X.Z. Fern and C.E. Brodley. “Random projection for high dimen-
sional data clustering: A cluster ensemble approach”. In: Proceedings
of 20th International Conference on Machine learning. 2003.

[15] A. Bertoni and G. Valentini. “Ensembles Based on Random Projec-
tions to Improve the Accuracy of Clustering Algorithms”. In: Neural
nets 2005 3931 (2006), p. 31.

[16] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul. “Unsupervised
spike detection and sorting with wavelets and superparamagnetic
clustering”. In: Neural Computation 16.8 (2004), pp. 1661–1667.

[17] S. Lloyd. “Least squares quantization in PCM”. In: Information
Theory, IEEE Transactions on 28.2 (1982), pp. 129 –137. ISSN:
0018-9448. DOI: 10.1109/TIT.1982.1056489.

[18] L. Galluccio, O.J.J. Michel, et al. “Graph Based k-Means Clus-
tering”. In: Elsevier Signal Processing (2011). DOI: 10 . 101
6/j.sigpro.2011.12.009.

2626

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

