
  

  

Abstract— The structure of motor unit potentials (MUPs) 

and their times of occurrence provide information about the 

motor units (MUs) that created them. As such, 

electromyographic (EMG) data can be used to categorize 

muscles as normal or suffering from a neuromuscular disease. 

Using pattern discovery (PD) allows clinicians to understand 

the rationale underlying a certain muscle characterization; i.e. 

it is transparent. Discretization is required in PD, which leads 

to some loss in accuracy. In this work, characterization 

techniques that are based on estimating probability density 

functions (PDFs) for each muscle category are implemented. 

Characterization probabilities of each motor unit potential 

train (MUPT) are obtained from these PDFs and then Bayes 

rule is used to aggregate the MUPT characterization 

probabilities to calculate muscle level probabilities. Even 

though this technique is not as transparent as PD, its accuracy 

is higher than the discrete PD. Ultimately, the goal is to use a 

technique that is based on both PDFs and PD and make it as 

transparent and as efficient as possible, but first it was 

necessary to thoroughly assess how accurate a fully continuous 

approach can be. Using Gaussian PDF estimation achieved 

improvements in muscle categorization accuracy over PD and 

further improvements resulted from using feature value 

histograms to choose more representative PDFs; for instance, 

using log-normal distribution to represent skewed histograms. 

I. INTRODUCTION 

An electromyographic (EMG) signal is a voltage signal 
created by sampling the electric fields created by a 
contracting muscle. More specifically, the electrical activities 
of motor units recruited during muscle contraction summate 
to create an EMG signal [1]. In the literature, there are 
deterministic as well as probabilistic techniques that can be 
applied to extract as much information as possible from EMG 
signals. It is better to start with an abstraction and some 
definitions so that the reader can be more familiar with the 
literature used in this field. A muscle consists of muscle 
fibers. The muscle fibers of each muscle are grouped 
according to the specific α-motor neuron that innervates 
them. A single α-motor neuron and the muscle fibers it 
innervates are referred to as a motor unit (MU) [1], [2]. There 
are two forms of EMG; surface and intramuscular EMG. 
Accordingly, there are two types of electrodes used to detect 
EMG signals; surface or needle electrodes, respectively. With 
the electrode suitably positioned, the examined muscle is 
voluntarily activated and produces time varying voltage 
fields which are detected as EMG signals. The decision of 
which method to use depends on the objectives and scope of 
the investigation. Clinically detected intramuscular EMG 
signals are the focus of this paper.  
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The clinical categorization of an examined muscle, 
acquired through EMG data, is used to support diagnosis and 
treatment of neuromuscular disorders. The objective is to 
build a system that automates diagnosis by categorizing an 
examined muscle. It is intuitive to assume that the MUs 
comprising a muscle being examined are used to form the 
basis upon which a muscle categorization is determined. In 
[3], Pino, Stashuk and Podnar proposed using a Naive Bayes 
classifier to aggregate decisions over MUs and categorize a 
muscle. They considered two muscle categories; normal and 
neuropathic. In this work, a Naive Bayes classifier that 
considers three categories (normal, neurogenic and 
myopathic) is applied. As the names suggest; a muscle that 
belongs to the normal category is a healthy muscle. A muscle 
belonging to the myopathic category suffers from a 
myopathic disorder, and correspondingly so for the 
neurogenic category. When there is a myopathic or 
neurogenic disorder in a muscle, the defining characteristics 
of its action potentials differ accordingly and this is why 
EMG signal analysis can be used in supporting diagnosis of 
these muscles. For example, action potentials of myopathic 
muscles usually have shorter durations than normal muscles 
while those belonging to neurogenic muscles usually have 
longer durations and much higher amplitude values. 

The electrical activity of a single motor unit is 
represented by a motor unit potential train (MUPT). For each 
MUPT, there is a MUP template which is considered a 
representative of its respective MUPT [11]. MUPTs need to 
be characterized to help predict from what category of 
muscle they were detected. This can be done using several 
techniques; statistical or probabilistic; for example, a 
probabilistic approach accomplished by pattern discovery 
techniques is used in [4]. The methods proposed in this paper 
are probabilistic as well.  

Specifically, each set of MUPTs represents the electrical 
activity of a sample of MUs from the muscle being 
examined. Each MUPT is represented by features of its MUP 
template, the stability of its MUP shapes and MU firing 
pattern statistics. The MUPTs are characterized by a set of 
conditional probabilities, one for each category, using either 
pattern discovery (PD) or PDF estimation. Bayes rule is then 
used to aggregate these MUPT characterization probabilities 
to obtain a set of muscle categorization probabilities. In the 
training dataset, MUPTs are represented by their respective 
numerical feature values. Out of all the features currently 
calculated, a feature set was chosen to be used for MUPT 
characterization. Pattern discovery (PD) is a technique that is 
built on quantizing feature values into events and using these 
events to create rules upon which classification is based. 
Even though there is some information lost due to the 
quantization step, PD has the added value of being more 
transparent [4]; the categorization of a muscle can be 
explained to clinicians more easily. When PDF estimation is 
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used for MUPT characterization, the training values of each 
feature and each category are used to estimate probability 
distributions and a Naive Bayes (NB) classifier is used to 
aggregate the resulting probabilities of each feature given a 
certain category to obtain the MUPT characterization 
probability given this category. In the testing phase, 
probability distributions formed in training are used along 
with values comprising the MUPTs of the muscle being 
examined to obtain MUPT characterization probabilities. 
Using PDFs does not require discretization as it is fully 
continuous. Therefore, there is no information lost as is the 
case when PD is used. 

Ultimately, this paper evaluates the muscle categorization 
accuracies achieved when using a probabilistic approach that 
is built on either estimating PDFs to estimate MUPT 
characterizations or using PD. The main goal of this paper is 
to evaluate the difference in terms of accuracy between the 
best variations of the PDF estimation approach and the PD 
approach. Future work is to perform more investigation 
regarding how to enhance the accuracy of a hybrid technique 
that is built on both (continuous) PDF estimation and discrete 
PD, without losing transparency. Some other related issues, 
like feature selection and dependence relationships between 
features, are handled in this work as well. 

II. METHOD 

A. Muscle Categorization Using Bayesian aggregation 

In [3], Pino et al. proposed using Bayesian aggregation to 
combine sets of MUPT conditional probabilities into a single 
set of probabilities, containing, for each muscle category, the 
probability of a muscle belonging to that category 
conditioned on the set of sampled MUPTs. As mentioned 
above, they used two categories; therefore the prior 
probabilities were 0.5 for each category. Equation (1) depicts 
the Bayesian probabilistic model concluded from Bayes 
theorem after assuming that all prior probabilities of the three 
categories are equal [3]: 
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Where muscle = yk means that muscle belongs to category yk 
and {MUP1, MUP2, ..., MUPN} is the set of N MUPs sampled 
from the muscle; MUPi is the ith MUP of the set {MUP1, 
MUP2, ..., MUPN} 

Fig. 1 shows an example of how (1) works; it denotes the 
Bayesian aggregation when there are N MUPs and three 
categories as is the case with the methods proposed in this 
work. The pies on the left hand side show the 
characterization of each MUPT. The light sector denotes the 
probability that an MUPT is ‘normal’, the dark sector denotes 
‘myopathic’ while the darker sector refers to the possibility it 
is ‘neurogenic’. Using (1), the probabilities of MUPTs are 
aggregated and the categorization probability of the whole 
muscle is obtained. As depicted in Fig. 1, there is 
approximately a 53% probability that the muscle in question 
is normal, 38% it is myopathic and 9% it is neurogenic [3]. 

 

Figure 1.  A NB classifier applied to aggregate probabilities of MUPTs [3] 

B. MUPT Characterization using Pattern Discovery (PD) 

Pattern discovery is an information theory based 
technique established on detecting significant patterns in the 
data and using these patterns in classification. PD was first 
introduced by Wong and Wang [5]-[8]. PD is applied on 
discrete data and, as a result, a quantization step is needed for 
each feature that has continuous data values, which is the 
case with most EMG features. The number of discretization 
bins can be identified according to the nature of the problem 
at hand and the dataset used. For instance, if the number of 
bins is three; low, medium and high for each feature, there 
might be some inaccuracy according to putting “very high” 
and “slightly high” values in the same bin. On the other hand, 
using five bins; very low, low, medium, high and very high 
would relatively solve such a problem but more training 
examples will be needed to keep the same number of patterns 
per bin. In the PD classification algorithm, the first step is to 
discover the “significant” patterns; patterns that are repeated 
more often than expected assuming a random occurrence [9]. 
Rules are composed of patterns in addition to the specific 
muscle category they represent. The order of a rule is equal to 
the number of features plus the muscle category (normal, 
myopathic or neurogenic in our work) to which the pattern 
belongs. For example, a high amplitude pattern in the 
neurogenic MUPTs is a 2

nd
 order rule. Each rule has a weight 

of evidence (WOE) that denotes how much evidence the rule 
holds in support of a certain category [4]. For rule selection 
during testing, the highest order rule for each category is 
selected first. WOEs of selected rules are added to be 
normalized and this process continues until there are no more 
rules or all features have already been included in the 
previously selected rules [9]. In addition to the well known 
pros and cons of discretization, characterizations performed 
by PD are transparent, and this is very significant because the 
reason for not using a “black box” method like support vector 
machines or neural networks is their inability to provide 
clinicians with clear rationale for the classification process; 
something a clinical decision support system cannot do 
without. When PD is used, there is a decrease in accuracy 
due to discretization performed on the continuous MUPT 
feature values. 

C. MUPT Characterization using a Naive Bayes classifier 

and PDF estimation 

Each MUPT is represented by its MUP template, MUP 
shape stability and MU firing pattern feature values. A 
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feature set is selected first.  Then a PDF is estimated for each 
feature given a category and the PDF parameters are 
estimated using maximum likelihood estimation (MLE). 
Histograms of each feature along with each category are used 
to choose estimated PDFs. A Naive Bayes (NB) classifier is 
utilized to aggregate the conditional feature probabilities and 
obtain each MUPT characterization probability given a 
certain category as in (2) 
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Where MUPT = yk means that MUPT belongs to category yk 
and {F1, F2, ..., FN} is the set of N features selected for 
characterization. P(yk) is the prior probability of the MUPT 
category y; for this work the prior probabilities of the three 
categories were assumed to be equal. 

In all the proposed PDF estimation techniques, values of 

each feature in each category (label) are supposed to be 

drawn from a specific PDF. The accuracy of characterization 

depends on how close to the truth the estimated PDF and the 

estimated parameters are. Histograms show that most 

features do not follow a Gaussian distribution; and that 

assuming they are drawn from a log-normal distribution is 

closer to the truth. Characterization was performed using the 

Gaussian PDF assumption first and then the log-normal 

assumption to assess the difference between both. The PDF 

equations of the Gaussian and log-normal distributions are 

given in (3) and (4) respectively. 
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Parameters µ and σ in (3) and (4) are estimated using 

maximum likelihood estimation (MLE) by calculating the 

mean and standard deviation of the values and log of the 

values, respectively, in the training data. Due to the fact that 

unknown parameters are being estimated, sample values 

obtained for each of them can contain errors; even with 

MLE searches to achieve minimum error. The larger the size 

of the training data, the more accurate the MLE parameter 

estimates, as the variance of estimated parameters gets closer 

to the Cramér–Rao bound. Using the selected feature values 

belonging to each MUP of the studied EMG signals, 

characterization probabilities of every MUP are calculated 

given each label. A NB classifier is used to aggregate 

characterization probabilities of the selected features to get 

the MUP characterization.  

As the histogram of every feature can be displayed and 

characterization probabilities of each feature are calculated 

separately, there is no need to assume the same PDF for all 

the features. It is more precise to manually check histograms 

and choose the PDF that looks closer to the shape of the 

corresponding histogram. For example, after inspecting the 

“thickness” feature histogram, it can be concluded that its 

data are more likely to be drawn from a Gaussian PDF than 

a log-normal PDF. This proposed technique is referred to in 

the rest of this paper as the NB adaptive log-normal PDF 

estimation technique. 

In the early eighties, Vianelli proposed a generalized 

version of the log-normal distribution [10]. This version has 

an additional shape parameter r, and the original log-normal 

distribution represents this generalized version with r = 2 

[10]. The PDF of the 3-parameter generalized log-normal, 

also known as the exponential power distribution is given in 

(5) [10]. 
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The parameter µ is the mean as in (3), while 
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III. RESULTS 

Data  used were acquired under IRB approval and 
sanitized of any personal identifying information and then 
processed using decomposition-based quantitative 
electromyography (DQEMG). Data are gathered in a 
database that is used in both training and testing. This 
database contains information from 371 muscles in four 
groups, as per their location in the body; forearm, arm, lower 
leg and upper leg. As the forearm group contains only three 
myopathic muscles, it was excluded from these experiments 
as three muscles are considered very few for one category 
and do not provide enough information for classification. 
There are three muscle categories; normal, myopathic or 
neurogenic. In the database, there are entries for 9822 
MUPTs extracted from EMG signals acquired during 1408 
contractions. There are currently five groups of features 
calculated following signal decomposition that describe each 
MUPT [11]. One group contains MUP template size features 
like area and amplitude, another group contains MUP 
template shape features. The third group contains features 
that describe MUP template complexity like fiber count while 
the fourth has features describing the stability of the MUPs in 
the MUPT.  The fifth group includes features that describe 
the MU firing pattern. The MUP stability and MU firing 
pattern features represent the whole MUPT, not only the 
MUP template [11]. 

Apart from the sixth row, the set of features used to 
obtain the results displayed in all of the other rows of Table I, 
is referred to as Feature Set 1. This feature set consists of 
turns, area, thickness & Ajiggle [12]. It achieved higher 
accuracy than all other feature sets consisting of 1 to 5 
features with NB adaptive Log-normal, apart from the feature 
set used to obtain the results in the sixth row, as will be 
clarified later. Leave one out cross validation was used to 
obtain all the accuracy values shown in Table I. 

The first two rows of Table I show the accuracy results 
when using PD to characterize the MUPTs. Classification 
accuracy using PD with 5 quantization bins to discretize the 
continuous feature values is clearly better than when only 3 
bins are used. 

Histograms of most features are positively skewed; which 
supports the assumption that such features are drawn from a 
log-normal distribution. Nonetheless, a trial was still 
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implemented using the Gaussian PDF assumption, just to 
compare it with the other techniques. The third row of Table I 
shows the results of applying the NB Gaussian technique. 
The more plausible approach of assuming log-normal PDFs 
was then applied and the results are displayed in the fourth 
row of Table I. The log-normal distribution estimation 
technique has a higher average accuracy, which is in line 
with the information obtained from the histograms. The fifth 
row of the Table I exhibits the results of using the NB 
adaptive log-normal PDF estimation technique. Looking at 
the histograms of the features in Feature Set 1, the 
“thickness” feature was assumed to be drawn from a 
Gaussian distribution rather than log-normal. The average 
accuracy of the adaptive log-normal technique is 2.1% higher 
than the rigid log-normal technique.  The seventh row 
displays the accuracy results when using the generalized log-
normal estimation technique. The average accuracy is 76.7; it 
is 1.4% higher than the adaptive log-normal technique. The 
value of r was selected to be 2.25 empirically as this is the 
value that led to the highest average accuracy (the range of 
values of r from 1.7 to 2.4 led to average accuracy values 
higher than r values outside this range). For all the continuous 
PDF methods (rows 3-8), classification error was higher for 
myopathic muscles than for those with a neurogenic disorder. 

NB classifiers assume independence between features. As 
this is not always true in reality, it was intriguing to check 
what happens if the dependence relationships between the 
features are taken into consideration. Correlation values were 
used to express this dependence. The last row of Table I 
shows the results of using Feature Set 1 and the NB adaptive 
Log-normal technique without assuming independence 
between features. The average performance did not improve. 
Taking into account the flexibility induced by the 
independence assumption and the fact that it is faster, more 
straightforward and does not require the storing of feature 
correlation values for each category, it is clear that assuming 
independence is valid and is favored. The independence 
assumption was applied to get the accuracy results for all the 
techniques introduced in this work. 

Feature Set 1 contains features from four different groups 
of features (review feature groups described earlier), which 
leads to a more comprehensive description of the MUPTs 
classified and that was confirmed by applying an exhaustive 
feature selection technique for all (1 to 5 features) feature 
sets. The technique is wrapper-based as classification 
accuracy is the criterion used to judge the quality of a feature 
set. Using NB adaptive Log-normal to test all the (1 to 5) 
feature combinations (sets), the only competitive feature set 
to set 1 was Feature Set 2 consisting of turns, amplitude, 
thickness & Ajiggle. Feature Set 2 led to a better accuracy 
result for both the lower leg and upper leg muscles while the 
NB adaptive log-normal techniques using Feature Set 1 for 
the arm muscles had better accuracy than Feature Set 2 as 
shown in the sixth row of Table I. 

IV. CONCLUSION 

Even though muscle categorization techniques, like other 
clinical decision support systems, should be transparent, it is 
still important to check how accurate a classification system 
would be if transparency was not an issue. 

TABLE I.  ACC URACY RESULTS OF ALL THE TECHNIQUES 

Technique 
Muscle group 

Lower leg Upper leg Arm Average 

PD (using 3 bins) 54.3% 64.3% 61.7% 60.1% 

PD (using 5 bins)a
 73.0% 69.2% 62.9% 68.4% 

NB Gaussian PDF 74.2% 69.3% 75.1% 72.9% 

NB log-normal PDF 76.0% 71.5% 72% 73.2% 

NB adaptive log-

normal PDF 
78.8% 71.0% 75.9% 75.3% 

NB adaptive log-
normal with features 

in Feature Set 2 

80.2% 72.2% 74.1% 75.5% 

NB generalized log-

normal PDF (r = 

2.25) 

82.3% 70.4% 77.2% 76.7% 

NB adaptive log-

normal (assuming 
features dependence) 

78.2% 71.4% 75.6% 75.1% 

a. All rows (methods) except the sixth use Feature Set 1 (defined earlier) 

As things stand, using a fully continuous approach is more 

accurate than using a fully discrete and transparent PD 

approach. This work quantified the difference in terms of 

accuracy between both approaches. Now that the accuracy 

values of the PDF estimation technique are identified, using 

a hybrid approach should follow. Theoretically, there should 

be a decrease in accuracy as it is not going to be a fully 

continuous approach but the aim is to improve the accuracy 

of this hybrid approach without losing transparency. 
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