
 

 

 

 

 

Abstract— Electromyographic (EMG) signal decomposition is 

the process of resolving an EMG signal into its constituent motor 

unit potential trains (MUPTs). In this work, the possibility of 

improving the decomposing results using two supervised feature 

extraction methods, i.e., Fisher discriminant analysis (FDA) and 

supervised principal component analysis (SPCA), is explored. 

Using the MUP labels provided by a decomposition–based 

quantitative EMG system as a training data for FDA and SPCA, 

the MUPs are transformed into a new feature space such that the 

MUPs of a single MU become as close as possible to each other 

while those created by different MUs become as far as possible. 

The MUPs are then reclassified using a certainty–based 

classification algorithm.  Evaluation results using 10 simulated 

EMG signals comprised of 3-11 MUPTs demonstrate that FDA 

and SPCA on average improve the decomposition accuracy by 

6%. The improvement for the most difficult-to-decompose signal 

is about 12%, which shows the proposed approach is most 

beneficial in the decomposition of more complex signals. 

I. INTRODUCTION 

An Electromyographic (EMG) signal acquired during a 
muscle contraction is the superposition of background noise and 
motor unit potential trains (MUPTs) of the motor units (MUs) 
that are active throughout the contraction. EMG signals contain 
valuable information on activity, state of health, and the 
characterization of the muscle from which they are detected [1]. 
For example, the MU firing pattern of these MUs can assist 
with the better understanding of the neural control of movement 
[2]. The characteristics (amplitude, duration, complexity, 
number of phases, and number of turns) of the motor unit 
potential (MUP) templates of the MU can assist with the 
diagnosis of neuromuscular disorders [1].  An efficient 
technique for extracting such information is EMG signal 
decomposition.  

EMG signal decomposition is a process by which MUPTs 
are extracted from an EMG signal such that each extracted 
MUPT estimates the actual MUPT generated by a single MU. 
The purpose of EMG signal decomposition is to provide an 
estimate of the firing pattern and MUP template of each active 
MU that contributed significant MUPs to the EMG signal. In 
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general, EMG signal decomposition is accomplished by 
employing digital signal processing and pattern recognition 
techniques in four/five steps [3]: signal preprocessing, signal 
segmentation and MUP detection, feature extraction, clustering 
of detected MUPs and/or supervised classification of detected 
MUPs . The first two steps are to remove noise from the signal, 
make the MUPs into narrow spikes, and detect the MUPs of the 
MUs that contribute to the signal. The last three steps are to 
group the detected MUPs into several MUPTs such that each 
MU has only one corresponding MUPT in the decomposition 
results. 

 Numerous EMG signal decomposition algorithms have 
been developed [3]. In fact, various feature extraction, 
clustering and supervised classification techniques have been 
employed to reduce the level of false-classification error (FCE) 
rate and missed-classification error (MCE) rate of the extracted 
MUPTs. This paper demonstrates the possibility of improving 
the decomposition results using Fisher discriminant analysis 
(FDA) and supervised principal component analysis (SPCA). 
Specifically, we will show that the combined FDA or SPCA 
and a certainty-based classifier (CBC) technique [4] will 
improve both FCE and MCE rates in the extracted MUPTs.  

A challenge in using SPCA and FDA for EMG 
decomposition is that these techniques need labeled (training) 
data while such data is not available a priori. In fact, in EMG 
decomposition, neither the number of MUPTs nor the labels of 
the MUPs are known in advance. In this work, the 
decomposition results provided by a decomposition-based 
quantitative EMG (DQEMG) system [5] is used as training data 
for FDA and SPCA. Following is a brief discussion of the steps 
of using FDA or SPCA for improving EMG decomposition 
accuracy.  

II. METHODS 

The presented decomposition system involves three steps. 
First, the signal is decomposed using the DQEMG system [5]. 
Second, the class assignments are used to estimate parameters 
required for FDA/SPCA and transform the MUPs into a new 
feature space. Third, the MUPs are reclassified using the CBC 
algorithm in the new feature space.  

A. DQEMG System 

The DQEMG system decomposes a given EMG signal off-
line in the five steps discussed above. Here, we briefly explain 
this system and more details can be found in [5].The signal is 
filtered using a first-order low pass difference filter to decrease 
MUPs temporal overlap, sharpen MUPs, and increase the 
differences between MUPs created by different MUs. To 
identify the positions of suitable MUPs in the prefiltered signal, 
the signal is scanned for the peaks that satisfy several criteria 
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(e.g., having suitable peak values) [5]. Each detected MUP is 
then represented by 2.56 ms of filtered data (i.e., 80 samples at 
a 31250 Hz sampling rate), centered about the position of its 
peak. These 80 time-samples are used as a feature vector 
representing each MUP and, ultimately, to sort MUPs into 
several MUPTs.  

he 
objective is to assign a given MUP to a MUPT with which its 
time of occurrence and shape are more consistent than the firing 
pattern and MUP shape of the other MUPTs.

, MUP clustering is 

conducted using a shape and temporal-based clustering (STBC) 
algorithm. The STBC is partially based on k-means clustering 
algorithm, i.e., it groups MUPs based on their MUP shape 
similarity. Moreover, the firing pattern information is used to 
test the validity of the assignments in STBC [6].  

Using the information obtained regarding possible MUPTs 
of the given EMG signal, the remaining unclassified MUPs are 
assigned to the extracted MUPTs via the CBC algorithm that 
employs both MUP shape and MU firing pattern information to 
determine the class label of a MUP. The CBC algorithm first 
identifies the MUPTs with the most and the next most similar 
MUP templates to the MUP to be classified (denoting by 

 using Euclidean distance similarity measure. Then it 
calculates the certainty values of assigning  to one of these 
two trains. The certainty values are calculated by combining 
MU firing pattern (   ) and MUP shape (   ) certainties as  

        
      

                                 (1) 

where    is  the certainty of assigning  to  MUPTi which is 

one of the two closest MUPTs to  Firing pattern certainty 
     

measures the consistency of the occurrence time of   

relative to the established MU firing pattern of MUPTi. MUP 
shape certainty      

measures the consistency of the shape of 

the   to that of the MUPs in MUPTi and is estimated by 
multiplying normalized absolute shape certainty (    ) and 
relative shape certainty (    ). The     represents the distance 

from  to the template of a train, normalized by the energy of 
the template. The     represents the distance from   to the 
most similar MUP template relative to the distance of   to the 
next most similar MUP template. 

Having the    values calculated, the  is assigned to the 
MUPT which has the greatest    values, if            is 

greater than a certainty threshold (    ). Otherwise,  is left 
unassigned.  

B. Fisher Discriminant Analysis 

Fisher discriminant analysis (FDA) is a classical supervised 
dimensionality reduction algorithm, which was first introduced 
by Fisher [7]. FDA looks for a transformation   that projects 
data to a subspace where data samples from different classes are 
as far as possible from each other and those inside a class as 
close as possible. This can be formulated using the within-class 

(  ) and between-class (  ) covariance matrices. In other 
words, the optimization problem in FDA is as follows 

       
     

     
 .                                 (2) 

The solution for this optimization problem is the 
eigenvectors of   

     [8]. The dimensionality of obtained 
subspace is at most the same as the number of classes. 

C. Supervised Principal Component Analysis 

Principal component analysis (PCA) is a classical 
unsupervised dimensionality reduction technique that projects 
data into a maximum variance subspace. Representing data in 
this projected subspace is optimal in reconstructing data in 
mean-squared-error sense (for example see [8]). This is 
important in applications such as denoising and coding. 
However, this representation is not optimal for classification 
tasks. This is mainly because PCA is an unsupervised approach 
that does not take into account the category information in 
finding the low dimensional subspace. 

To overcome this major drawback of PCA, which is 
important in classification tasks, supervised PCA (SPCA) has 
been recently proposed [9]. Since SPCA is based on Hilbert-
Schmidt independent criterion (HSIC), we first briefly explain 
HSIC and then describe the formulation for SPCA. 

HSIC is a kernel-based method to measure the dependency 
of two random variables   and   [10].  To this end, HSIC 
computes the Hilbert-Schmidt norm of the cross-covariance 
operators in reproducing kernel Hilbert spaces (RKHSs) [10, 
11]. Since its introduction, the HSIC has been used in many 
applications including feature selection [12], independent 
component analysis [13], and sorting/matching [14]. 

For practical purposes, HSIC has to be estimated using a 
finite number of data samples. Consider 
                          as n independent 
observations drawn from     . An empirical estimate of HSIC 

is as follows 

        
 

      
                              (3) 

where    is the trace operator,           ,              , 

             , and            (  is the identity matrix,  

  is a vector of n ones, and hence   is the centering matrix).  It 
is important to notice that according to (3), to maximize the 
dependency between two random variables   and  , the 
empirical estimate of HSIC, i.e.,          should be 
maximized. Next, we describe SPCA using HSIC. 

Essentially, SPCA addresses the problem of finding an 

orthonormal transformation   (i.e.,      ), which projects 
data to a space where the dependency between data and their 
corresponding labels is maximum. Thus, considering a finite 
training set of n data points, each of which consisting of d 

features, i.e.,                    ,  the objective is to 

find the subspace     where the dependency of projected data  

    is maximized with respect to the labels  . Based on what 
was explained above, this can be done using HSIC by 
maximizing         , where   is a kernel defined on 

projected data     such as         , and   is a kernel on 

the labels  , e.g.,      .   
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Replacing these kernels on projected data and labels in 
        , and knowing that the value of trace operator is 
invariant to the rotation of its arguments, we obtain  

                         
                  
                

 
(4) 

Now, the optimization problem is to find the orthonormal 
transformation  , which maximizes this trace function, i.e., 

       
 

              

                
(5) 

where the constraint of the optimization problem is due to the 
orthonormality of the transformation  . 

It is well known that the solution for this optimization 

problem is the eigenvectors of         . Hence, if we 
want the subspace to be of   dimension, where    , then 
transformation   is consisting of the top eigenvetors 
corresponding to the largest eigenvalues of  . 

Both SPCA and FDA need labeled data. Therefore, these 
methods in general cannot be directly applied to EMG 
decomposition problem because such training data is not 
available a priori. In this work, the classification results 
provided by the DQEMG system are used as training data for 
FDA and SPCA. Specifically, the MUPs that their    values > 
0.5 are used to estimate the parameters of the FDA and SPCA 
that ultimately transform the MUPs into a new feature space. 
The FDA/SPCA will improve the separability of MUPs created 
by different MUs and subsequently will improve the 
classification of the MUPs. In the new feature space, a final 
inspection is made on the MUPs. However, to speed up 
decomposition process, reclassifying the MUPs whose certainty 
values are smaller than 0.5 has been only considered. The CBC 
algorithm is used to classify MUPs where the certainties for 
assigning each of these MUPs are re-calculated as explained in 
Section II-A. The MUP will be moved from its current MUPT, 
to the MUPT that has the greatest new certainty value, if the 
new certainty value is greater than maximum of      and current 
certainty value. In the remaining of this paper, the 
decomposition algorithm that uses FDA to transform MUPs 
into a new feature space is denoted as FDAEMGD (FDA-based 
EMG decomposition) and the algorithm that employs SPCA is 
called SPCAEMGD (SPCA-based EMG decomposition). 

III. RESULTS AND DISCUSSION 

The effectiveness of the FDA and SPCA in improving the 
decomposition of EMG signals was studied using 10 simulated 
EMG signals that were generated using a physiologically–based 
EMG signal simulation algorithm [15]. This EMG simulator 
creates intramuscular EMG signals with different complexities 
such as different numbers of active MUs, different degrees of 
MUP shape and/or firing pattern variability (represented by the 
amount of jitter and coefficient of variation (CV) of intern 
discharge interval (IDI)), and different signal intensities 
(represented by the average number of MUPs  per second 
(pps)). The parameters of the 10 signals used in this work are 
given in columns 2 to 5 of Table I.  

The following three performance measure indices were used 
to study the advancement achieved by using FDA or SPCA.  

    
                        

                             
     (6) 

    
                                    

                             
       (7) 

     
                                    

                             
     (8) 

The two indices    and   , in fact, express the level of MCE 
rate and FCE rate in the MUPTs obtained from decomposing a 
signal, respectively. High value of    shows low MCE rate 
level, likewise high value of    indicates low FCE rate. 

The results for DQEMG, FDAEMGD, and SPCAEMGD 
applied to the 10 EMG signals are summarized in Table I. The 
overall mean and standard deviation (STD) for the three 
performance indices used are provided as well. The statistical 
comparison of the average values was conducted using analysis 
of variance (ANOVA) where    5% and the Tukey-Kramer 
honestly significant difference test has been used for pair-wise 
comparison of the mean values. 

Based on the results presented in Table I, the FDA and 
SPCA performed similarly on the signals used. Compared to the 
DQEMG, a significant improvement was achieved in    by 
using FDA or SPCA. The accuracies of the extracted MUPTs 
(  ) are slightly improved. Such improvements, can lead to a 
better estimation of MUP templates and MU firing patterns of 
the MUs because the accuracy of the error filtered estimation 
algorithm [16] in estimating MU firing pattern statistics 
increases when the MCE rate in the train decreases [16].  

TABLE I. The performance of the DQEMG compared to that of the FDAEMGD and SPCAEMGD for 10 simulated EMG signals. 

     DQEMG  FDAEMGD  SPCAEMGD 

Signal Intensity 

(pps) 

No. of 

MUPTs 

Jitter 

(μs) 

IDI_CV    

(%) 

   

(%) 

CCr 

(%) 

    

(%) 

   

(%) 

CCr 

(%) 

    

(%) 

   

(%) 

CCr 

(%) 

1 30.5 3 100 0.15 92.1 97.2 89.5  97.4 99.3 96.7  97.7 98.7 96.4 
2 41.8 5 100 0.15 87.8 97.5 85.6  92.4 97.9 90.5  94.5 98.0 92.6 
3 45.6 4 50 0.15 88.8 93.1 82.7  91.5 96.4 88.2  95.6 96.6 92.3 
4 54.0 6 50 0.15 92.6 98.0 90.7  94.1 98.2 92.4  94.8 98.1 93.0 
5 59.4 7 100 0.15 90.7 95.9 87.0  93.6 96.9 90.8  92.8 97.1 90.1 
6 68.2 7 50 0.15 90.2 96.4 86.9  92.4 96.8 89.4  92.5 97.5 90.2 
7 82.5 8 100 0.15 83.5 89.8 75.0  92.0 93.7 86.2  90.6 91.4 82.8 
8 85.2 9 50 0.15 89.3 87.3 78.0  89.8 89.9 80.8  88.7 89.8 79.7 
9 97.5 10 100 0.15 86.0 84.8 74.3  88.0 93.2 82.1  87.1 93.3 81.3 

10 105.2 9 50 0.15 80.6 87.1 70.2  89.3 92.5 82.6  87.0 92.7 80.6 

  Mean   88.2 92.7 82.0  92.1 95.5 88.0  92.1 95.3 87.9 

  STD   3.8 5.0 7.1  2.7 3.0 5.1  3.7 3.2 6.1 
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The improvement in decomposition results increases with 
the complexity of the signal. For example, the improvement in 
CCr (as an example) for signal #10 is 12.4% which is about 2 
times of the average improvement in CCr while for signal # 1, 
which has the highest decomposability among these 10 signals, 
is about 7.0%.  

Figure1 presents an example of the decomposition results 
obtained by the FDAEMGD. The histogram of the IDIs and 
also the firing pattern plots reveal that the obtained MUPTs 
have low MCE and FCE rates. 

The presented FDA- and SPCA-based decomposition 
systems are for decomposing intramuscular EMG signals 
mainly for clinical applications where the MUP template and 
mean MU firing rate for each MUPT are required. Since these 
parameters can be estimated from incomplete MUPTs, 
superimposed MUPs were not resolved. In fact, the majority of 
MUPs left unassigned are superimposed MUPs.  

The main disadvantages of the system developed using FDA 
and SPCA is that it is computationally more complex than the 
DQEMG. Calculating the covariance matrix of the MUP 
features and its singular value decomposition takes time. 
Nevertheless, the system is still fast enough to be used in 
clinical environments. 

IV. CONCLUSION 

 In this paper, we showed that using FDA and SPCA could 

lead to an improvement in EMG decomposition results. 

Specifically, these two supervised feature extraction techniques 

assisted with significantly reducing the MCE rates in the 

MUPTs obtained by the DQEMG. The FCE rates in the 

MUPTs are improved too but not as much as the MCE rate. 

Finally, both FDA and SPCA performed almost the same on 

the signals used in this work.  
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Figure 1. An example of decomposition results obtained using the FDA-based EMG decomposition system. The first column shows the shimmer plot 
of the slope of the MUPs assigned to each MUPT. The second column shows the template for these MUPs. The third column presents the IDI 

histogram of each MU. Finally, the last column presents the firing pattern of each MU. 
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