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Abstract— Monitoring human beings’ major daily activities is 

important for many biomedical studies. Some monitoring 

applications may require highly reliable identification of certain 

postures and activities with desired accuracies well above 99% 

mark. This paper suggests a method for performing highly 

accurate classification of postures and activities from data 

collected by a wearable shoe monitor (SmartShoe) through 

classification with rejection. The classifier used in this study is 

support vector machines that uses posterior probability based on 

the distance of an observation to the separating hyperplane to 

reject unreliable observations. The results show that a 

significant improvement (from 95.2%  3.5% to 99%  1%) of 

the classification accuracy has been reached after the rejection, 

as compared to the accuracy reported previously. Such an 

approach will be especially beneficial in application where high 

accuracy of recognition is desired while not all observations need 

to be assigned a class label. 

I. INTRODUCTION 

Monitoring of posture allocations and physical activity is 
used in many areas of biomedical research [1]. For instance, it 
has been shown that prostate cancer is directly related to 
extensive sitting [2]. Obesity may be caused by insufficient 
physical activity (e.g. walking, standing) and prolonged car 
driving [3]. Osteoporosis is reported to be related to daily 
physical activity. Higher physical activity was associated with 
lower bone loss [4]. Moreover, abnormal patterns of daily 
activities are symptoms of many diseases. It is reported that 
the kids with autism have weak muscles and may result fewer 
daily activities than healthy kids [5]. The same situation exists 
in the post stoke patients [6] and patients with Amyotrophic 
Lateral Sclerosis [7]. Thus, monitoring physical daily 
activities can assist clinical diagnosis of the diseases, and most 
importantly, can help people to have a healthy life style. 

Many methods and devices exist for monitoring of 
physical activity in research, clinical and consumer 
applications. However, most of these devices have difficulty 
in recognition of basic weight-bearing and non-weight bearing 
activities (such as recognition of sitting vs. standing, walking 
vs. cycling). Our group has developed a shoe-based activity 
monitoring system (SmartShoe) that resolves the issues 
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common to other monitors by incorporating pressure and 
acceleration sensors in footwear. SmartShoe has been applied 
to the accurate prediction of energy expenditure [8], 
monitoring of posture allocations and activities in healthy [1], 
automatic detection of temporal gait parameters in post stroke 
individuals [6], and prediction of body weight [9]. 

While the accuracy of recognition of basic postures and 
activities by SmartShoe has been high and varied between 
95% and 98% in various subject populations, some research 
and clinical applications may require very high reliability of 
classification, well in excess of 99%. For example, such 
activity as walking may need to be recognized to provide 
biofeedback specific to walking. In such an application, quite 
often it is not necessary to recognize all instances of walking 
during the day, but those instances that are recognized should 
be classified with high reliability. 

Classification of postures and activities from SmartShoe 
sensors can be performed by one of the many classifiers 
available, such as decision trees, k-nearest-neighbors, and 
regression methods etc. In this study, we used Support Vector 
Machines (SVM) to classify different postures. SVM is 
widely used to pattern classification in the data mining field 
[10], and it was developed from the theory of Structural Risk 
Minimization (SRM) [11]. However, for some data sets, a 
good classifier may not provide satisfactory classification 
results since there are always outliers in the data sets. An 
approach, called classification with rejection, has been 
developed to solve the problem [12]. The approach rejects the 
data points that are closed to the decision boundary. For 
example, if there are 1000 data points to be classified, we 
reject 200 data points that are relatively close to the decision 
boundary. However, we are 99% sure that the remaining 800 
data points are classified correctly. Thus, it can improve the 
accuracy of the classification significantly, especially for big 
sample size classifications. This technique has a sound 
theoretical justification [13] and has been successfully used by 
us in sleep state classification [14]. This paper will focus on 
highly accurate detection of the postures and activities by 
using the classification with rejection approach. 

II. METHODS AND MATERIALS 

A. Description of the shoe-based monitor system  

The shoe-based monitor system contains six sensors total 
in each shoe as shown in Fig. 1, including five pressure 
sensors on the insole and one three dimensional accelerometer 
on the heel of the shoe. The detail description can be found in 

[1]. 
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B. Data description 

This study utilizes data collected in an experiment  
preformed at Clarkson University [1]. Nine subjects were 
recruited to participate in the study (anthropometric 
characteristics are shown in Table I).   

Figure 1.  (a) A pair of shoes with wearable sensors, wireless transmitter, 

and batteries. Arrows show anterior–posterior (AAP ), medial–lateral (AML ), 

and superior–inferior (ASI ) axes of the accelerometer equiped. (b) A pressure 

sensitive insole. PH is heel pressure sensor, PMO , PMM , and PMI are the fifth, 

third, and first metatarsal head sensors, respectively, and PHX is the hallux 

sensor. 

TABLE I.  THE ANTHROPOMETRIC CHARACTERISTICS OF THE 9 

SUBJECTS 

  Description 

Subject 
Gender 

Weight

(kg) 

 

Height 

(inches) 

BMI
a 

Age 
Shoe 

size 

1 F 55 64.25 20.7 24 7.5 

2 F 55.6 62.25 22.2 18 7 

3 M 83 67.75 28.0 31 10.5 

4 F 70 61 29.2 26 8.5 

5 F 100.9 63 39.4 29 7.5 

6 M 84 71 25.8 20 10.5 

7 M 59 69.5 18.9 22 9.5 

8 F 59.2 70 18.7 20 9 

9 F 67.6 66 24.1 23 8.5 

a. Body Mass Index (BMI) 

All the subjects were required to perform a variety of 
activities while wearing SmartShoe on both feet. All subjects 
were healthy and informed written consent was obtained from 
each participant. The research protocol was approved by the 
Institutional Review Board (IRB) at Clarkson University, 
Potsdam, NY where the study was conducted.  

TABLE II.  SAMPLE SIZE FOR THE SIX POSTURES IN THE STUDY 

 

 
Sit Stand 

Walk/

Jog 

Ascend 

stairs 

Descend 

stairs Cycle 

N.o. of 

epochs 
3218 3207 10721 550 506 2688 

C. Signal processing  

Minimal signal preprocessing was applied to the sensor 
data collected, including feature vector forming and 
normalization. No statistical features were calculated from 
sensor signals and no cleaning or artifact rejection was applied. 
Feature vectors were constructed to represent a time period 
(epoch) of two seconds in duration. Table II shows counts of 
all the epochs recorded for six classes of postures and 
activities, including sitting, standing, walking at different 
speeds and jogging, ascending stairs, descending stairs and 
cycling. The time series of data from both shoes were 

combined as  
iRLi SSf , , i = {1, . . . , M}, where SL, SR were 

the data samples from the left and right shoe, respectively, and 
M was the length of time series. The sampling frequency was 
25 Hz. 

Since different sensors may generate signals in different 
scales, a normalization procedure was performed to the raw 
data as following, 
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where ijX  is the element of the raw signal in the i-th row and 

the j-th column of the dataset, ijx is the scaled value of ijX . F 

is the entire matrix of the raw signal. After the normalization, 

all the elements follow ]1,0[ijx . 

D. Classification with rejection and the validation method  

After the signal processing, SVM was used to classify the 
epochs with rejection. The method of classification with 
rejection is widely used [10, 12] and has been proved to be an 
effective approach to improve classification accuracy. For the 
SVM classifier, outputs could be modified to construct a 
posterior probability from the distance of an observation (in 
this case an epoch of sensor signals) to the separating 
hyperplane [15]. The criteria used to decide if a validated 
epoch was rejected or not in this study was the posterior 
probability estimates (PPEs) provided by a Matlab package of 
libSVM [16]. The PPEs are the measurements of how far 
away the tested epoch is from the decision boundary.  

For the classical two-class (binary) formulation of SVM 
classification, the output of an SVM classifier is in the form 

))(( xfsigny  , 

  bxxkyxf
SVN

i

iii 
1

),( , 

where NSV is the number of support vectors, ix  are the input 

data points, iy  are the class targets , b is the bias,  ),( ixxk is a 

kernel function [16], and i are the Lagrange multipliers from 

2612



  

solving quadratic optimization problem. The output )(xf  

can be modified to a posterior probability by 
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where )(xf  is the absolute value of )(xf , n is a scaling 

factor decided from a validation set, and   is the norm of 

the weight vector. In terms of distance measures,  xsv dd   is 

the distance between an input epoch and a support vector. 

For multi-class classification problem such as the problem 
at hand libSVM utilizes a one-against-one classification 
method [17] that trains k(k-1)/2 binary classifiers (where k is 
the number of classes). During prediction the class with most 
votes becomes the winner. The posterior probability for the 
winning class can be obtained by a variety of methods [18]. 
LibSVM implements an iterative algorithm for performing 
pairwise coupling and estimating posterior probabilities [18]. 

The PPEs provided by libSVM package 

follow  1,0PPEs . Posture epochs were rejected if their 

PPEs are below the desired threshold value T. That is, if 

TPPEi  , the i-th epoch was rejected. 

The validation method used in this study is 4 fold. All the 
posture epochs were separated into 4 groups non-intersecting 
between subjects. Three of the four groups were used to train 
the SVM model and the other one was used for testing. The 
procedure was repeated four times until all 4 groups were used 
for testing. 

III. RESULTS 

To show the improvement of the posture classification 
accuracy by the rejection, classification was performed with 
and without rejection using linear and RBF kernels for 
comparison.  

When different PPEs threshold values are set, different 
numbers of epochs were rejected. The percentage of the 
postures epochs left after the rejection with different values of 
T is shown in Fig. 2. According to Fig.2, the higher the 
threshold value is, the smaller percentage of posture epochs 
left. With the threshold value of 0.9, the percentage of 
epochs left is around 80%, which is still a majority of the 
epochs. 

Table III and IV show the confusion matrices without 
rejection (A) and with rejection (B) when the linear kernel 
and RBF kernel were used, respectively. The threshold 
value of the PPEs for the rejection was 0.9. Both specificity 
and sensitivity have been significantly improved after the 
rejection for all six postures. The most significant 
improvement for the linear kernel is the sensitivity of 
“Ascending stairs”; and for the RBF kernel, the most 
significant improvement is the specificity of “Descending 
stairs”. Those were increased by 36% and 14%, 
respectively. The total classification accuracy was increased 

from 92% to 99% for the linear kernel and 97% to 99% for the 
RBF kernel. 

Moreover, RBF kernel provided a better performance in 
the classification than the linear kernel. A possible reason was 
discussed in the work by Keerthi and Lin [19]. In addition, the 
RBF kernel rejects fewer epochs than the linear kernel 
according to the confusion matrices shown in Table III and 
IV, especially in the activities of descending and ascending 
stairs.  

 

Figure 2.   The percentage of epochs left when different probability 

threshold values are set up. The results are based on the 4 fold validation with 

linear kernel. 

TABLE III.  CONFUSION MATRIX WHEN LINEAR KERNEL IS USED 

WITHOUT REJECTION (A) AND WITH REJECTION (B), THE INTERSECTION OF THE 

SPECIFICITY AND THE SENSITIVITY IS THE TOTAL ACCURACY. 

        Predict 

Actual      Sit Stand Walk 
Ascend 

stairs 

Descen

d stairs 
Cycle 

Specifi

city 

Sit 2937 28 119 43 79 12 0.913 

Stand 50 3080 2 41 18 16 0.960 

Walk 163 54 10339 52 99 14 0.964 

Ascend 

stairs 
109 24 78 237 89 13 0.431 

Descend 

stairs 
87 21 63 61 254 20 0.502 

Cycle 145 6 75 7 4 2451 0.912 

Sensitivit

y 
0.841 0.959 0.968 0.537 0.468 0.970 0.924 

(A) 

(B) 

        Predict 

Actual      Sit Stand Walk 
Ascend 

stairs 

Descen

d stairs 
Cycle 

Specifi

city 

Sit 2420 2 0 1 0 2 0.998 

Stand 1 2893 0 0 0 7 0.997 

Walk 4 0 9361 4 29 0 0.996 

Ascend 

stairs 
22 2 8 76 14 1 0.618 

Descend 

stairs 
11 1 4 3 93 1 0.823 

Cycle 9 3 5 0 0 2040 0.992 

Sensitivity 0.981 0.997 0.998 0.905 0.684 0.995 0.992 
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TABLE IV.  CONFUSION MATRIX WHEN RBF KERNEL IS USED WITHOUT 

REJECTION (A) AND WITH REJECTION (B), THE INTERSECTION OF THE 

SPECIFICITY AND THE SENSITIVITY IS THE TOTAL ACCURACY. 

        Predict 

Actual Sit Stand Walk 
Ascend 

stairs 

Descen

d stairs 
Cycle 

Specifi

city 

Sit 3096 3 0 1 0 118 0.962 

Stand 44 3131 2 27 3 0 0.973 

Walk 2 3 10625 61 30 0 0.991 

Ascendsta

irs 
8 6 35 461 37 3 0.838 

Descend 

stairs 
0 3 44 88 371 0 0.733 

Cycle 115 4 0 0 0 2569 0.956 

Sensitivity 0.948 0.994 0.992 0.723 0.841 0.955 0.970 

(A) 

        Predict 

Actual Sit Stand Walk 
Ascend 

stairs 

Descen

d stairs 
Cycle 

Specifi

city 

Sit 2533 2 0 0 0 2 0.998 

Stand 0 3003 0 0 0 0 1.000 

Walk 0 0 9997 42 18 0 0.994 

Ascendsta

irs 
0 0 0 304 8 0 0.974 

Descend 

stairs 
0 0 3 39 287 0 0.872 

Cycle 56 0 0 0 0 2435 0.978 

Sensitivity 0.978 0.999 1.000 0.790 0.917 0.999 0.991 

(B) 

IV. CONCLUSION AND DISCUSSION 

Some research and clinical applications may require 
highly reliable recognition of postures and activities. This 
paper suggests use of classification with rejection technique 
based on multi-class classification by Support Vector 
Machines. The classification performance was compared 
before and after the rejection, indicating a significant 
improvement can be achieved by using the classification with 
rejection. 

According to the results of this study, some postures and 
activities result in lower classification accuracy than others. 
For example, the average accuracy for “Ascending stairs” is 
approximately 88% after the rejection. Such accuracy may 
results from close similarity of this activity to others (such as 
“Walking/Jogging”) or inter-subject variation in performing 
this activity. A potential strategy to further improve 
classification accuracy is to incorporate simple individual 
subject calibration in the future work.  

REFERENCES 

[1] E. Sazonov, G. Fulk, J. Hill, Y. Schutz, and R. Browning, “Monitoring 

of posture allocations and activities by a shoe-bashed wearable sensor,” 

IEEE Trans. Biomedical Engineering, vol. 58, pp. 983-990, Apr. 2011. 

[2] T. Kubo, K. Ozasa, K. Mikami, K. Wakai, Y. Fujino, Y. Watanabe, T. 

Miki, M. Nakao, K. Hayashi, K. Suzuki, M. Mori, M. Washio, F. 

Sakauchi, Y. Ito, T. Yoshimura, and A. Tamakoshi, “Prospective 

cohort study of the risk of prostate cancer among rotating-shift workers: 

findings from the Japan collaborative cohort study,” American Journal 

of Epidemiology, vol. 164, pp. 549–555, 2006. 

[3] L.D. Frank, M.A. Andresen, and T. L. Schmid, “Obesity relationships 

with community design, physical activity, and time spent in cars,” 

American Journal of Preventive Medicine, vol. 27, pp. 87-96, Aug. 

2004. 

[4] T.V. Nguyen, P. N. Sambrook, and J. A. Eisman, “Bone loss, physical 

activity, and weight change in elderly women: the dubbo osteoporosis 

epidemiology study,” Journal of Bone and Mineral Research. Vol. 13, 

pp. 1458-1467, 1998. 

[5] S. J. Rogers, S. Hepburn, and E. Wehner, “Parent reports of sensory 

symptoms in toddlers with autism and those with other developmental 

disorders,” Journal of Autism and Developmental Disorders, vol. 33, 

pp. 631-642, 2003. 

[6] P. Lopez-Meyer, G. D. Fulk, and E. Sazonov, “Automatic detection of 

temporal gait parameters in poststroke individuals,” IEEE Trans. 

Information Technology in Biomedicine, vol. 15, pp. 594-601, July 

2011.  

[7] W. Tang, U. Tasch, N. K. Neerchal, L. Zhu, P.,Yarowsky, “Measuring 

early pre-symptomatic changes in locomotion of SOD1-G93A rats – a 

rodent model of Amyotrophic Lateral Sclerosis,” J. of Neurosci. 

Methods, vol. 176, pp. 254-262, 2009. 

[8] N. Sazonova, R. C. Browning, and E. Sazonov, “Accurate prediction of 

energy expenditure using a shoe-based activity monitor,” Official 

Journal of the American College of Sports Medicine, DOI: 

10.1249/MSS.0b013e318206f69d, 2011. 

[9] N. Sazonova, R. Browning, and E. Sazonov, “Prediction of bodyweight 

and energy expenditure using point pressure and foot acceleration 

measurements,” The open Biomedical Engineering Journal, vol. 5, pp. 

1-6, 2011. 

[10] C. Ma, M. A. Randolph, and J. Drish, “A support vector 

machines-based rejection technique for speech recognition,” in Proc. 

2001 IEEE int. conf. on Acoustics, Speech, and signal Processing, Salt 

Lake City, 2001, pp. 381–384. 

[11] V. Vapnick, “The Nature of Statistical Learning Theory,” 

Springer-Verlag, New York, 1995. 

[12] M. Wegkamp, and M. Yuan, “Support vector machines with a reject 

option,” Bernoulli 2011, vol. 17, pp.1368-1385, 2011. 

[13] E. Alpaydin, “Introduction to Machine Learning,” The MIT press, 

Boston, 2004. 

 A.T. Lewicke, E.S. Sazonov, M.J. Corwin, S.A.C. Schuckers, CHIME 

study group, “Sleep versus wake classification from heart rate 

variability using computational intelligence: consideration of rejection 

in classification models,” IEEE Transactions on Biomedical 

Engineering, vol. 55, pp. 108-118, Jan. 2008.

 

[16] C.C. Chang, and C.-J. Lin, “LIBSVM: a library for support vector 

machines,” ACM Trans. Intelligent Systems and Technology, vol. 2, 

pp. 1-27, 2011. 

[17] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multi-class 

support vector machines,” IEEE Transactions on Neural Networks, vol. 

13, pp.415-425, 2002. 

[18] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for 

multi-class classification by pairwise coupling,” Journal of Machine 

Learning Research, vol. 5, pp. 975-1005, Aug 2004. 

 S. S. Keerthi, and C.-J. Lin, “Asymptotic behaviors of support vector 

machines with Gaussian kernel,” Neural Computation, vol. 15, pp. 

1667-1689, July 2003.

2614


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

