
Pulse Rate Estimation Using Hydraulic Bed Sensor

B.Y. Su, K.C. Ho, M. Skubic, and L. Rosales

Abstract— We propose in this paper an effective method to
obtain the pulse rate from a hydraulic sensor that is placed
under the mattress. The sensor captures the superposition of
the ballistocardiogram (BCG) and the respiration signals. The
BCG is modeled as the j-peak with a frequency modulation
component. The proposed method utilizes the Hilbert transform
to effectively capture the j-peak, which allows the pulse rate
information to come out distinctively in the frequency domain.
Among the five subjects tested, the error in pulse rate estimation
is less than 1%.

I. INTRODUCTION

In the United States, cardiovascular disease affects 37% of
the population [1]. In-home pulse rate monitoring systems
can provide early signs of the problem and avoid fatal
consequences. We are interested in monitoring the pulse
rate of a person while sleeping. Although many types of
wireless wearable pulse rate sensors have been developed,
non-wearable monitoring system are more comfortable for
sleeping.

Previous non-invasive sensor systems for pulse rate mon-
itoring include an image-based system [2], ultrasonic sensor
[3] [4], mattress type sensor [5] and infrared diode sensor [6].
They are, however, expensive and complicated. The pillow
type sensor [7] is easy to install and maintain. However, it
does not often provide consistent signal measurements.

In this paper, we use a hydraulic sensor for pulse rate
monitoring. It is composed of a tube filled with water and a
pressure sensor. The sensor is placed under the mattress to
maintain the sleeping comfort.

The data acquired from the sensor contains the BCG [8]
and the respiration signals. After removing the respiration
component, the Hilbert transform [9][10] is applied to extract
the pulse envelopes from which the pulse rate is estimated.
Compared with previous methods [11] [12], better estimation
accuracy is achieved.

This paper is organized as follows. The details of the
hydraulic bed sensor and measurement parameters are
described in section II. In section III, the approach of using
the Hilbert transform for pulse rate estimation is presented.
The estimation algorithm is developed in section IV. The
results are given in section V. Finally, the conclusion will
be drawn in section VI.
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TABLE I
DETAILS OF PARTICIPANTS FOR EVALUATION.

Subject Gender Age Height Weight Cardiac
(cm) (kg) history

1 male 24 180 86 No
2 male 26 170 63 No
3 female 30 160 58 No
4 female 32 163 53 Yes
5 male 32 173 86 No

II. THE HYDRAULIC BED SENSOR

The transducer is a three inch wide, twenty inch long
discharged hose that is filled with 70 percent of water.
The end of the transducer has an integrated silicon pressure
sensor (Freescale MPX5010GP) that is used for measuring
the vibration from the discharged hose. In the experimental
setup, four sensors are placed under the mattress as shown in
Fig. 1 (a). The output signal of the integrated pressure sensor
is connected to the hardware filtering circuit. The hardware
filtering circuit is composed of an amplifier and a filter.
The amplifier uses 741 op-amp to amplify the signal by the
factor of 10. The filter is an 8th-order integrated Bessel filter
(Maxim MAX7401). The signal is sampled by the National
Instruments NI9201 12-bit analog to digital converter (ADC)
with a sampling rate equal to 100 Hz. The typical pulse
obtained from the sensor is shown in Fig. 1 (b).

Fig. 1. (a)Position of bed sensors. (b) the single pulse.

Ground truth is needed to evaluate the performance of the
proposed pulse rate estimate. It is obtained by a piezoelectric
pulse sensor (ADInstruments MLT1010) that is attached to
the subject’s finger. The ground truth signal is acquired
simultaneously through the same ADC for the hydraulic bed
sensor, using the same sampling rate to maintain synchro-
nization.

The dataset consists of the measurements from 5 subjects.
One subject has a prior cardiac condition. The details of the
subjects are listed in Table I. The subjects are asked to lie flat
on the back for 2.5 minutes. After the measurement cycle,
the data having the strongest amplitude of j-peaks among the
four transducers will be kept for further analysis. Fig. 3 (a)
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shows a typical signal from one of the hydraulic transducers.

III. METHODOLOGY

We shall model the transducer data as

m(t) = r(t)+ p(t)cos(2π fot)+ ε(t) (1)

where r(t) is the respiration cycle which represents a sinusoid
with frequency equal to the respiration rate. p(t) is a periodic
pulse sequence modeling the j-peak of the BCG with the
cycle rate equal to the pulse rate and fo is the modulation
frequency chosen as 4Hz to match the data measurements.
ε(t) is the additive noise. Fig. 2 shows the individual com-
ponents of (1) and the synthesized signal m(t). Comparing
it with the actual signal measurement in Fig. 2 (e), our data
model (1) appears to be quite reasonable.

Since the respiration rate is much slower than the pulse
rate, the respiration signal r(t) can be removed by applying
a band-pass filter to m(t). The filtered data is represented as

m′(t) = BPF(m(t)) = p(t)cos(2π fot)+ ε ′(t). (2)

We will need to remove the modulation component
cos(2π fot) in order to obtain the pulse information. We
propose to use the Hilbert transform for this purpose. The
Hilbert transform replicates the input signal as the real-
part and produces its 90 degree phase shift version as the
imaginary component. The Hilbert transform of m′(t) can
be expressed as

h(t) = m′(t)+ jmi(t). (3)

mi(t) is after 90 degree phase shift of m′(t) and it is
approximately equal to

mi(t)∼= p(t)sin(2π fot). (4)

when the noise is negligible and the variation of p(t) is
ignored.

Since we are interested in the period of p(t), the mag-
nitude square of h(t) can remove the unwanted modulation
component, giving

g(t) = |h(t)|2 = (m′(t))2 +(mi(t))2 = (p(t))2 (5)

which can be processed further to obtain the pulse rate.

IV. ALGORITHM

Fig. 3 depicts 30 seconds of the data measurement in the
time and in the frequency domain. The time domain data
appears quite random and the strong peak in the frequency
domain represents the respiration rate. Without processing
the data carefully, it is not possible to observe the pulse rate.

Fig. 4 shows the block diagram to obtain the pulse
rate. We apply a band-pass filter to the data to remove
the respiration information. Then we segment the data and
apply the Hamming window to remove the leakage in the
frequency domain. The Hilbert transform mentioned as
above extracts the heart beat envelopes in the data segments.

Fig. 2. The modeling of bed sensor data, the x-axis covers 15 sec at 100
Hz sampling rate. (a) the respiration signal r(t). (b) the pulse signal p(t).
(c) the frequency component cos(2π fot). (d) the data synthesized according
to 1 without ε(t). (e) the measuring data.

Finally, by using the fast Fourier transform (FFT) and
finding the first peak location in the frequency domain, we
can obtain the pulse rate.

Fig. 3. Thirty seconds of data. (a) the time domain of the data. (b) the
frequency domain of the data.

Fig. 4. The data processing blocks for pulse rate estimation.

A. Band-pass Filter

We would like to decouple the respiration information
when estimating the pulse rate. In this paper, the Butterworth
filter with order equal to 6 is used. The respiration rate is
often lower than 0.5 Hz. Therefore, the band-pass filter with
cutoff frequency equal to 0.7 Hz to 10 Hz can remove most of
the respiration component in the data. The result after band-
pass filtering is shown in Fig. 5. Comparing with Fig. 3, it is
clear that the pulse information appears on the time domain
waveform. Most of the low frequency components in Fig. 3
(b) are gone in Fig. 5 (b) while the information up to 10 Hz
is maintained.

B. Sequential Estimation

The size of the moving window for segmentation is equal
to 30 sec. After the pulse rate estimation using the data
within the window, the window advances 10 sec in time for
the next processing segment. The 67% window overlap can
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Fig. 5. Data after band-pass filtering. (a) data in the time domain. (b) data
in the frequency domain.

prevent any loss of information at the edge of the window.
The windowed data for estimation can be represented by

x̃i(n) = w(n)x(n+ i(N/3)) (6)

where x̃i(n), i = 0,1, ...,N − 1 denotes the data after seg-
mentation and windowing, i represents the frame number
and n represents the sample number within the segment. N
is window size and is equal to 3000. w(n) is the window
function. It is chosen to be the Hamming window.

Fig. 6 (a) gives the time data signal x̃i(n) after the
Hamming window. The corresponding frequency domain
data is shown in Fig. 6 (b).

Fig. 6. A data segment after applying the the Hamming window. (a) data
in the time domain. (b) data in the frequency domain.

C. Hilbert Transform

In Fig. 6 (b), after band-pass filtering and windowing, the
pulse information is still not apparent, due to the modula-
tion harmonic component cos(2π fot) that is coupled with
the pulse signal p(t). The Hilbert transform will be used
to extract the pulse envelopes. After applying the Hilbert
transform and magnitude-square by (3) and (5), Fig. 7 (a)
shows time domain output. The periodicity in Fig. 7 (a) can
be easily observed when taking the FFT and according to the
FFT magnitude spectrum shown in Fig. 7 (b), it has a clear
and distinctive main peak at the pulse rate which is equal to
0.95 Hz (57 heart beats per min) in this case.

V. RESULTS

Fig. 8 - Fig. 12 show the pulse rate estimation result of the
subjects over 2.5 minutes. The open circle denotes the result
from the proposed method and the close circle represents
the ground truth. It is noticed that the pulse rate of subject 1
changes significantly. Nevertheless, the proposed method is
able to follow and provide reasonably good estimation. To
better characterize the performance, we compute the error
rate defined as

Fig. 7. Signal after applying the Hilbert transform and magnitude square
to the windowed data segment. (a) the time domain signal. (b) the FFT
magnitude of (a).

TABLE II
ERROR RATE OF TWO METHODS.

Subject Proposed method WPPD
1 0.96 % 0.76 %
2 0.85 % 1.17 %
3 0.46 % 2.08 %
4 0.33 % 1.88 %
5 0.60 % 2.08 %

Error Rate =
1
M

·
M

∑
i=1

|GT (i)−Est(i)|
GT (i)

×100 % (7)

where GT (i) is the ground truth, Est(i) is the estimated pulse
rate at segment i and M is the total number of segments.
GT (i) is obtained by applying FFT on the ith segment in
the piezoelectric pulse sensor data and locating the largest
peak in the frequency domain. The results are shown in Table
II.

Subject 4 has lowest error rate equal to 0.33 % and subject
1 has highest error rate equal to 0.96%.

Table II also provides the results for the method from [11]
[12] for comparison, which used the windowed peak to peak
(WPPD) method to analyze the data in the time domain. The
proposed algorithm gives much better results in subjects 2
to 5. For subject 1, we have a little bit worse result than the
WPPD method.

Comparing the estimation results of subject 1 in Fig 8 with
that of subject 4 in Fig 11, subject 1 has larger pulse rate
variations. Because the proposed method obtains the pulse
rate through sliding window which assumes the pulse rate
is constant within a segment, the high variations of pulse
rate will increase the error rate. In addition, the time domain
of sensor data for subject 1 is cleaner than for subject 4.
Therefore, the WPPD has lower error rate for subject 1. On
the contrary, the new algorithm performs well for all five
subjects. Improving the performance of the proposed method
under high variations in pulse rate is a subject for further
study.

VI. CONCLUSIONS

In this paper, we propose a new algorithm to obtain
the pulse rate from a hydraulic bed sensor. The transducer
data contains the respiration information and the multi-peak
BCG. A band-pass filter is used to remove the respiration
information. The Hamming window is applied to reduce the
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leakage in the frequency domain due to data segmentation.
By exploiting the Hilbert transform, we can extract the
pulse envelopes and obtain accurate pulse rate estimate in
the frequency domain. Comparing with WPPD, the new
algorithm has a lower error rate when the pulse rate is
not changing rapidly. In the situation when the pulse rate
variation is high, reducing the window size could improve the
performance. We plan to study about how the subject posture
and body movement affect the measurement signal quality,
consistency and the performance of the proposed method.

Fig. 8. The pulse rate estimation result of the proposed method and ground
truth for subject 1.

Fig. 9. The pulse rate estimation result of the proposed method and ground
truth for subject 2.

Fig. 10. The pulse rate estimation result of the proposed method and
ground truth for subject 3.
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