
 
 

 

  

Abstract—The prefrontal cortex (PFC) has been postulated to 
play critical roles in cognitive control and the formation of 
long-term memories.  To gain insights into the neurobiological 
mechanism of such high-order cognitive functions, it is 
important to understand the input-output transformational 
properties of the PFC micro-circuitry.  In this study, we identify 
the functional connectivity between the Layer 2/3 (input) 
neurons and the Layer 5 (output) neurons using a previously 
developed generalized Volterra model (GVM).  Input-output 
spike trains are recorded from the PFCs of nonhuman primates 
performing a memory-dependent delayed match-to-sample task 
with a customized conformal ceramic multi-electrode array.  
The GVM describes how the input spike trains are transformed 
into the output spike trains by the PFC micro-circuitry and 
represents the transformation in the form of Volterra kernels.  
Results show that Layer 2/3 neurons have strong and transient 
facilitatory effects on the firings of Layer 5 neurons.  The 
magnitude and temporal range of the input-output nonlinear 
dynamics are strikingly different from those of the hippocampal 
CA3-CA1.  This form of functional connectivity may have 
important implications to understanding the computational 
principle of the PFC.     

I. INTRODUCTION 
HE prefrontal cortex (PFC) refers to the anterior 

region of the frontal lobe of the mammalian brain.  It has 
been postulated to be critical for cognitive control, i.e., the 
top-down selection of appropriate behavior given multiple, 
possibly interfering sensory and motor inputs based on the 
internal goals [1].  Recent neuropsychological and 
neuroimaging studies have shown that the PFC also plays 
important roles in working memory and the formation of 
long-term memory [2]. 
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Figure 1. Prefrontal cortex (PFC) and the conformal ceramic multi-electrode 
array (MEA).  dlPFC: dorsolateral PFC; Black rectangles: recording pads 
(2a-d, 5a-d) on the MEA.  Spike trains recorded from layer 2/3 neurons and 
layer 5 neurons are the main input and output signals of the PFC circuitry, 
respectively. 

 
The anatomy of the PFC is well suited for performing such 

high-order, complex cognitive functions.  The PFC receives 
inputs from and sends outputs to virtually all other cortical 
areas and many subcortical structures.  Within the PFC, the 
subregions are also heavily interconnected.   However, 
similar to other neocortical areas, the PFC has a rather 
uniform structure at the micro-level: it consists of a large 
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number of 6-layer minicolumns that operate as the 
elementary computational units (Fig. 1).  Specifically, within 
a minicolumn, Layer 2/3 neurons receive sensory and motor 
inputs from other cortical areas, and Layer 5 neurons generate 
local circuit outputs to subcortical structures that mediate 
planned behaviors [3].  To gain insights into the 
neurobiological mechanism of the PFC functions, it is 
important to understand the input-output transformational 
properties of the PFC micro-circuitry.   

The goal of the research reported here is to identify the 
functional connectivity between PFC Layer 2/3 neurons and 
Layer 5 neurons during behavior using a generalized Volterra 
modeling approach.  Generalized Volterra model (GVM) was 
previously developed by our group for studying the 
hippocampal CA3-CA1 dynamics in the context of building a 
hippocampal prosthesis [4, 5].  It seeks to solve the problem 
of indentifying the nonlinear dynamics underlying 
multi-input-multi-output (MIMO) point-process signals and 
can be used as a general framework for modeling the spike 
trains to spike trains transformations performed by brain 
regions. 

II. METHODOLOGY 

A. Behavioral Task 
Four nonhuman primates (Macaca mulatta) were trained to 

criterion on a Delayed Match-to-Sample (DMS) task (Fig. 2) 
[6].  During the task, animals sat in primate chairs in front of a 
display screen and moved a cursor with their right arms.  A 
trial began with a ring tone and a visual cue at the center of the 
screen.  The animal moved the cursor to the cue to start the 
trial.  An image was then presented (Sample Presentation) 
and the animal had to move the cursor to the image to form a 
Sample Response.  The image then disappeared for a 
randomly occurring variable delay interval (1 – 30 sec).  After 
the delay, a number of (2 – 6) different images including the 
sample image were presented on the monitor (Match 
Presentation).  The animal had to move the cursor to the 
sample image (Match Response) to receive a juice reward.  
The task is memory-dependent since the animal needed to 
form a memory of the sample image and retain it during the 
delay period. 

 

 
 
Figure 2. Delayed match-to-sample task (DMS) for NHPs.  During the DMS, 
the NHP needs to match a sample image after a delay.  

B. Recording and Preprocessing of Spike Trains 
Spike trains were recorded from the PFCs of nonhuman 

primates (NHPs) performing the DMS task using a conformal 
ceramic multi-electrode array (MEA).  The MEA has eight 
recording pads (area: 20 × 150 µm/pad; 40 µm horizontal 

distance and 100 µm vertical distance between adjacent pads, 
e.g., 2a to 2c and 2a to 2b; 1350 µm distance between higher 
pads and lower pads, e.g., 2b and 5a).  The geometry of the 
MEA is designed in such a way so that pads 2a-d are in Layer 
2/3 and pads 5a-d are in Layer 5.  Figure 1 shows the 
arrangement of the ceramic MEA recording sites relative to 
the orientations of the pyramidal cell bodies and dendrites in 
Layer 2/3 and Layer 5.  Spikes were sorted and timestamped 
with a MAP Spike Sorter (Plexon, Inc.) and NeuroExplorer 
software (Nex Technologies), and further discretized with a 2 
ms bin size with Matlab (MathWorks).  Spike trains recorded 
from Layer 2/3 neurons and Layer 5 neurons are the input and 
output signals of the model, respectively. 

C. Multi-Input-Multi-Output Nonlinear Dynamical Model 
To identify the functional connectivity between Layer 2/3 

and Layer 5 neurons in PFC, we use a GVM approach 
previously developed for the modeling of hippocampal 
CA3-CA1 nonlinear dynamics [4]. 

   

 
 
Figure 3. Multi-input-single-output (MISO) model of spike train 
transformations.  This model is equivalent to a generalized Volterra model 
with a probit link function. 

 
In this approach, the identification of spatio-temporal 

pattern transformations from the input region to the output 
region is formulated as the estimation of a MIMO model that 
can be decomposed into a series of multi-input, single-output 
(MISO) models with a physiologically plausible structure that 
can be expressed by the following equations (Fig. 3A): 
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represents output (Layer 5) spike trains.  The hidden variable 
w represents the pre-threshold membrane potential of the 
output neurons.  It is equal to the summation of the 
post-synaptic potential u caused by input spike trains, the 
output spike-triggered after-potential a, and a Gaussian white 
noise ε with standard deviation σ.  When w exceeds threshold, 
θ, an output spike is generated and a feedback after-potential 
(a) is triggered and then added to w.  The transformation from 
x to u is expressed as a MISO Volterra series with a set of 
feedforward kernels k.  The transformation from y to a is 
expressed as a single-input, single-output Volterra series with 
a feedback kernel h.   

To reduce the total number of model coefficients and thus 
facilitate model estimation, Laguerre expansion of Volterra 
kernel technique is used.  The Volterra kernels are 
reconstructed with the Laguerre basis functions and the 
estimated Laguerre coefficients.  

Due to the Gaussian noise term and the threshold, this 
model is a special case of the GVM, which employs a probit 
link function (Fig. 3B).  All model parameters, i.e., k, h, σ, and 
θ, can be estimated simultaneously with an iterative 
re-weighted least-squares method and a simple normalization 
procedure [4].  In the final model representation, resting 
membrane potential is 0; threshold value is 1; first order 
kernel k1 can be interpreted as the post-synaptic potential 
(PSP) elicited by a single input spike; second order 
self-kernel k2s can be interpreted as the paired-pulse 
facilitation/depression function (See [4, 5] for more details.  
To simplify the notation, k is used to represent the response 
function r in [5]). 

To further reduce model complexity and avoid overfitting, 
a statistical procedure is used to select the significant inputs 
and model terms [5].  The resulted sparse GVM achieves 
maximal out-of-sample likelihood [7]. 

III. RESULTS 

A. GVMs of the PFC Layer 2/3-Layer 5 Dynamics 
We estimate second order GVMs of the PFC using the 

spike trains recorded during the DMS task.  A typical dataset 
contains 2-4 Layer 2/3 neurons and 2-4 Layer 5 neurons.  To 
focus on the most relevant neuronal activity and alleviate 
computation burden, only spikes recorded between the 
Sample Presentations and Sample Responses are considered.  
MISO models are first individually estimated and then 
concatenated to form the MIMO models for each dataset. 

Figure 4 illustrates the first order (k1), second order self 
(k2s) and feedback (h) kernels of a 3-input-2-output model.  
For both output neuron 1 and 2, input neuron 3 does not have 
significant effect so is not plotted.   

The most significant characteristics of the kernels are their 
large amplitudes.  In k1, the peak amplitudes are 0.24, 0.39, 
0.62, and 0.22, respectively.  Considering the estimated noise 
standard deviation σ of these two output neurons (0.33 and 
0.41),  the corresponding firing probabilities within a 2 ms 
time window can be calculated with the Gaussian error 
function (erf) as the follows: 
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The peak firing probabilities calculate to be 0.01, 0.03, 

0.18, and 0.03, respectively. 
The second significant characteristics are the short 

durations of the kernels, i.e., all kernels expand to 
approximately 20 ms with larger values happening in the first 
5 ms.  This indicates that the causal relations from Layer 2/3 
neurons to Layer 5 neurons are not only strong, but also fast. 

While all k1 are mostly positive going (i.e., facilitatory), the 
second order kernels are mostly negative going indicating 
paired-pulse depression effects.  Similar to k1, k2s are also 
large and transient. 

 

 
 

Figure 4. A second order GLVM of PFC nonlinear dynamics.  This specific 
model has two Layer 2/3 inputs and two Layer 5 outputs.  First order (k1) and 
second self (k2s) kernels are shown for each input-output pair.  Feedback 
kernels h are shown for each output. 

 

B. Model Goodness of Fit 
We further evaluate the model goodness of fit using a 

Kolmogorov-Smirnov (KS) test [7].  According to the 
time-rescaling theorem, an accurate model should generate a 
conditional firing intensity function that can rescale the 
recorded output spike train into a Poisson process with unit 
rate.  By further variable conversion, inter-spike intervals 
should be rescaled into independent uniform random 
variables on the interval (0, 1).  The model goodness-of-fit 
then can be assessed with a KS test, in which the rescaled 
intervals are ordered from the smallest to the largest and 
plotted against the cumulative distribution function of the 
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uniform density.  If the model is accurate, all points should be 
close to the 45-degree line of the KS plot.  Confidence bounds 
(e.g., 95%) can be used to determine the statistical 
significance [8]. 

 

 
 
Figure 5. Model goodness of fit evaluated with the Kolmogorov-Smirnov test 
based on the time-rescaling theorem.  Thick black lines:  KS plots with the 
GVM; dashed gray lines: KS plots without applying the GVM; thin black 
lines: 95% confidence bounds. 
 
 

Figure 5 shows that KS plots of the two Layer 5 output 
neurons.  The gray dashed lines show the KS plots without 
applying the GVMs and the black lines show the KS plots 
with the GVMs.  It is evident that the GVM can fairly 
accurately predict the output spike training, i.e., the KS plots 
are within (output 1) or close to (output 2) the 95% 
confidence bounds with the model, especially compared with 
the large deviation of the KS plots without applying the 
model.  

IV. DISCUSSION 
The differences between the PFC Layer 2/3-Layer 5 and 

hippocampal CA3-CA1 dynamics are striking.  In the 
hippocampal CA3-CA1, typical amplitudes of first order 
kernels are below 0.1, corresponding to firing probabilities 
approximately below 0.005, which means a single input spike 
almost never can drive an output neuron to fire.  In the PFC, 
the firing probability in a 2 ms time window can reach as high 
as 0.18 in the dataset we show.  This indicates a much 
stronger and less stochastic causal effect from Layer 2/3 to 
Layer 5.  On the other hand, the hippocampal CA3-CA1 
dynamics have a much longer duration.  The typical memory 
lengths of the kernels are hundreds of milliseconds as 
opposed to less than 20 milliseconds in the PFC.  It implies 
that the hippocampal CA1 neurons integrates "weak" 
information from possibly larger number of input neurons 
during a longer time span; while in contrast, the PFC Layer 5 
neurons receive "strong" information from possibly smaller 
number of input neurons during a shorter time span.  These 
different characteristics of the nonlinear dynamics may have 
important implications to the fundamental computational 
principles of those two brain regions. 

The KS results show that the model can capture the 
majorities of the nonlinear dynamics underlying the 
transformations from the Layer 2/3 spike trains to the Layer 5 
spike trains.  However, significant deviations from the actual 

output spike distribution still exist in the predictions (Fig. 5, 
especially in output 2).  This is not surprising since the current 
MEA technology only allows recording from a small number 
of neurons.  Even located in the same minicolumn, it is still 
unlikely that a Layer 5 neuron receives inputs from only two 
adjacent Layer 2/3 neurons.  More accurate model prediction 
might be achieved by recording signals from more input 
neurons with a multi-probe array and including them into the 
model.        

One must keep in mind that the functional connectivities 
are estimated based on the (nonlinear dynamical) correlations 
between the input and output signals and thus cannot be 
interpreted directly as synaptic connectivities.  For example, 
the near-zero delays between Layer 2/3 and Layer 5 neurons 
observed in this study are very unlikely caused solely by 
synaptic connections considering the synaptic transmission 
delays.  The underlying mechanism of this peculiarly tight 
coupling is unknown.  One possible explanation is that the 
Layer 2/3 and Layer 5 neuron are receiving common inputs 
and respond with high temporal precision.  Indeed, the 
cortical minicolumn consists of a highly interconnection 
neuronal network instead of the much simplified two-region 
feed-forward configuration used here in the MIMO modeling.  
Network-level modeling with realistic connectivity and 
multi-site recording in all six layers of the minicolumn might 
provide answers to such a mystery. 
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