
  

  

Abstract— The “Default Mode Network” concept was 
defined, in fMRI field, as a consistent pattern, involving some 
regions of the brain, which is active during resting state activity 
and deactivates during attention demanding or goal-directed 
tasks. Several fMRI studies described its features also 
correlating the deactivations with the attentive load required 
for the task execution. Despite the efforts in EEG field, aiming 
at correlating the spectral features of EEG signals with DMN, 
an electrophysiological correlate of the DMN hasn’t yet been 
found. In this study we used advanced techniques for functional 
connectivity estimation for describing the neuroelectrical 
properties of DMN. We analyzed the connectivity patterns 
elicited during the rest condition by 55 healthy subjects by 
means of Partial Directed Coherence. We extracted some graph 
indexes in order to describe the properties of the resting 
network in terms of local and global efficiencies, symmetries 
and influences between different regions of the scalp. Results 
highlighted the presence of a consistent network, elicited by 
more than 70% of analyzed population, involving mainly 
frontal and parietal regions. The properties of the resting 
network are uniform among the population and could be used 
for the construction of a normative database for the 
identification of pathological conditions. 

I. INTRODUCTION 

Recent studies in fMRI field highlighted the existence of 
a “Default Mode network” (DMN) characterizing the brain 
functions during the rest condition [1,2]. The DMN concept 
was defined as a consistent pattern of deactivation of some 
regions (precuneus/posterior cingulate cortex (PCC), medial 
prefrontal cortex (MPFC) and medial, lateral and inferior 
parietal cortex) which occurs during the initiation of task-
related activity. Such network is active during the resting 
state activity in which an individual is awake and alert, but 
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not actively involved in an attention demanding or goal-
directed task [1]. Moreover, the deactivation is correlated 
with the attentive load required for the task execution. In 
fact, the more demanding the task, the stronger the 
deactivation appears to be [3,4]. Some DMN abnormalities 
could be also put in relation with a number of different 
mental disorders [5].  

Several electroencephalographic (EEG) studies tried to 
describe some electrophysiological properties of DMN by 
correlating the spectral activity in a specific band with a 
specific group of brain areas belonging to the highlighted 
network [6,7]. Despite these efforts, an electrophysiological 
correlate of the DMN discovered in fMRI field hasn’t yet 
been found.  

For this reason, the aim of this study is to describe the 
electrophysiological properties of DMN by means of 
advanced techniques of functional connectivity estimation 
applied on EEG signals acquired during the resting state. 
The idea is to extract some salient indices borrowed from 
graph theoretical approach for characterizing the 
connectivity networks elicited during the rest condition by a 
population of 55 healthy subjects. Once evaluating their 
uniformity among the population, the values achieved for 
such indices could be included in a normative database to be 
used as a baseline in the identification of pathological 
conditions. 

II. METHODS 

A. Partial Directed Coherence 
The PDC [8] is a full multivariate spectral measure, used 

to determine the directed influences between any given pair 
of signals in a multivariate data set. This estimator was 
demonstrated to be a frequency version of the concept of 
Granger causality [9]. 

It is possible to define PDC as: 
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where )( fΛ  is a matrix containing the coefficients of 
associated Multivariate Autoregressive (MVAR) model.           

In this study we used the square formulation of PDC due 
to its higher accuracy and stability [10]. 
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B. Statistical Assessment of Connectivity Estimates: 
Asymptotic Statistic 
The assessment of the significance of the estimated causal 

links was performed by means of asymptotic statistic method 
[11], whose accuracy has been demonstrated in [12]. Such 
method is based on the assumption that PDC in the null case 
follows a χ2 distribution. The statistical threshold is achieved 
by means of a χ2 distribution obtained by applying a Monte 
Carlo method. The percentile related to the significance level 
imposed is then computed. Due to the high number of 
comparisons between PDC values and statistical thresholds, 
a correction for multiple comparisons issue is needed to 
avoid the occurrence of type I errors (false positives). The 
statistical theory provides different correction algorithms. 
We considered here the more recently introduced False 
Discovery Rate (FDR). 

C. Graph Theory 
A graph consists of a set of vertices (or nodes) and a set 

of edges (or connections) indicating the presence of some 
sort of interaction between the vertices. The adjacency 
matrix A contains the information about the connectivity 
structure of the graph. When a directed edge exists from the 
node i to j, the corresponding entry of the adjacency matrix 
is Aij = 1, otherwise Aij = 0. Several indices based on the 
elements of such matrix can be extracted for the 
characterization of the main properties of investigated 
networks [13]. 

 

Figure 1. Grand Average of functional connectivity patterns elicited during 
the eyes-closed condition by 55 healthy subjects in 6 frequency bands 
defined according to IAF: a) Theta Band (IAF-6, IAF-4), b) Lower1-Alpha 
Band (IAF-4, IAF-2), c) Lower2-Alpha Band (IAF-2, IAF), d) Upper Alpha 
Band (IAF, IAF+2), e) Beta Band (IAF+2, IAF+15), f) Gamma Band 
(IAF+15, IAF+30). Connectivity patterns are represented on a scalp model 
seen from above with the nose pointing the upper part of the page. Color 
and size of each arrow code the percentage of subjects who elicited the 
correspondent connection. 

Global Efficiency. The global efficiency is the average of the 
inverse of the geodesic length (shortest path between two 
nodes in the network) and represents the efficiency of the 
communication between all the nodes in the network [14].  

Local Efficiency. The local efficiency is the average of the 
global efficiencies computed on each sub-graph belonging to 
the network and represents the efficiency of the 
communication between all the nodes around the node i in 
the network [14].  

In order to describe symmetries and influences between 
different regions of the scalp, in this study we defined two 
new indices. Before the computation of these indices it is 
necessary to arrange the adjacency matrix by disposing in the 
first N1 rows and N1 columns the connectivity values related 
to the nodes belonging to the first scalp area and in the 
second N2 rows and N2 columns the connectivity values 
related to the nodes belonging to the second scalp area. 

Symmetry. The symmetry index is the difference in the 
number of internal connections between two different spatial 
regions. It could assume values in the range [-1 ; 1] and it is 
defined as follows  
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where 'A  is the arranged version of A. 

Influence. The influence index represents the difference in 
the number of inter connections between two different spatial 
regions. It could assume values in the range [-1 ; 1] and it is 
defined as follows 
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The last two indices were used in the study for investigating 
the symmetries and influences between the two hemispheres 
and between frontal and parietal areas. 

D. Experimental Design 
55 healthy subjects (age: 27.5±5 years; 25 female) 

participated in the study. The experiment consisted in 2 
minutes of recording session during which the subjects were 
asked to stay in a rest condition for one minute with their 
eyes closed and one minute with their eyes opened, without 
moving or performing any mental activities. A 64-channel 
system with a sampling frequency of 200 Hz (BrainAmp, 
Brainproducts GmbH, Germany) was used to record EEG 
data.  

EEG signals were band-pass filtered (1-45  Hz + 50 Hz 
Notch filter) and ocular artifacts were removed by means of 
Independent Component Analysis. EEG traces were 
segmented in epochs of 1s each in order to increase the 
robustness of methodologies applied in the following and  
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residual artifacts were removed. The whole dataset 
couldn’t be subjected to PDC computation due to the 
limitation, typical of multivariate approach, on the number of 
signals to be considered contemporary in the estimation. 
Thus a subset of 12 channels (spatially distributed on the 
scalp) among the 64 channels used for the recording (Fp1, 
Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, O2) were 
selected and used for PDC estimation. The achieved 
connectivity patterns were statistically validated by means of 
asymptotic statistic method for a significance level of 5% 
FDR corrected and subjected to graph indices computation. 

Thus in order to characterize the features of the networks 
elicited during the rest condition we computed a statistical 
study as described in the follow: 

1) Generation of 100 random graphs for each network 
without varying the total number of connections of the 
corresponding real network. 

2)  Extraction of all the graph indexes described above from 
each generated random network and average of the achieved 
values across all the iterations. 

3) Application of a statistical test, repeated measures 
ANOVA, for comparing the indexes extracted from real and 
random networks under different conditions.   

III. RESULTS 

After the pre-processing described in Sec. IID, the EEG 
traces related to resting condition of 55 healthy subjects were 
subjected to functional connectivity estimation. The optimal 
order of the correspondent MVAR model was estimated by 
means of Akaike Information Criterion (AIC) for each 
subject. The achieved estimations were averaged within six 
frequency bands defined according to Individual Alpha 
Frequency (IAF) [15] (IAF = 10.25 ± 0.86). Fig. 1 showed 
the Grand Average of functional connectivity patterns 
elicited during the eyes-closed condition by 55 healthy 
subjects in 6 frequency bands: a) Theta Band (IAF-6, IAF-
4), b) Lower1-Alpha Band (IAF-4, IAF-2), c) Lower2-Alpha 
Band (IAF-2, IAF), d) Upper Alpha Band (IAF, IAF+2), e) 
Beta Band (IAF+2, IAF+15), f) Gamma Band (IAF+15, 
IAF+30). Connectivity patterns are represented on a scalp 
model seen from above with the nose pointing the upper part 
of the page. Color and size of each arrow code the 
percentage of subjects who elicited the correspondent 

connection. The figure highlighted the existence of a 
consistent pattern elicited by more than 70% of the analyzed 
population. Such pattern was characterized by a sub-network 
between electrodes in frontal regions in theta, lower1 and 
lower2 alpha, by a role of Cz as source of information in all 
bands and by a sub-network between electrodes located in 
parietal areas in upper alpha, beta and gamma bands.  

 

Figure 2. Results of ANOVA performed on the indexes Symmetry (a) and 
Influence (b) between anterior and posterior parts of the scalp computed 
on resting and random network: plot of means with respect to the factors 
TYPE and BAND. ANOVA shows a high statistical significance 
(F=12.03, p<0.0001) for the case a) and (F=19.76, p<0.0001) for the case 
b) respectively. The bar on each point represents the 95% confidence 
interval of the mean errors computed across the subjects. The symbol * 
codes a significant difference between resting and random networks 
revealed by Duncan’s post-hoc test. 

In order to extract salient properties for describing the 
achieved connectivity patterns, we computed graph theory 
indices on their associated adjacency matrices. The 
adjacency matrices were extracted by means of the statistical 
validation method of connectivity patterns. In fact, the 
asymptotic statistic method allowed to build an adjacency 
matrix whose entries were 1 if the connection resulted 
significantly different from the null case and 0 if not. Once 
extracted the correspondent adjacency matrix for each 
subject and for each band, several indices, such as global and 
local efficiencies, symmetries and influences between the 
two hemisphere or between the anterior and posterior parts 
of the scalp, were computed. In order to validate the values 
achieved for the graph indices, 100 random graphs with the 
same number of connections were generated for each 
adjacency matrix. On each random graph indices described 
above were computed and averaged among the iterations. 

TABLE I.  RESULTS OF ANOVA STUDY 
 

GRAPH 
INDEXES 

TYPE TYPE x BAND 

F p F p 

Global efficiency 78.1 < 0.00001 12.01 < 0.00001 

Local efficiency 10.5 0.00201 1.16 0.323 

SLeft-Right 1.34 0.25 0.46 0.81 

ILeft-Right 3.75 0.58 0.52 0.76 

SAnterior-Posterior 0.12 0.73 12.03 < 0.00001 

IAnterior-Posterior 16.5 0.00016 19.76 < 0.00001 
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Then a statistical comparison between indices’ values 
achieved on real and random graphs was computed. 

In particular, for each index, a two way ANOVA was 
computed considering as main factors the type of graph 
(TYPE: real, random) and the band (BAND: theta, lower1-
alpha, lower2-alpha, upper alpha, beta, gamma). The results 
of each ANOVA were reported in Table1. In the first column 
the dependent variables are reported. In the other two 
columns the results (F and p) related to the effect of main 
factors TYPE and TYPE x BAND were showed. The table 
showed a significant influence of factor TYPE on global and 
local efficiencies and of factor TYPE x BAND only on 
global efficiencies. In particular, the Duncan’s post-hoc 
analysis revealed that the global efficiency of the network 
elicited during the rest condition is lower than those achieved 
with random graph for all bands. Instead an higher local 
efficiency was showed in resting network in respect to 
random patterns for all bands. No effects of factors TYPE 
and TYPE x BAND on symmetry and influence between the 
two hemispheres resulted from the ANOVA. Both indices 
remained around zero for both resting and random networks, 
indicating a complete symmetry between the two 
hemispheres. Fig.2 showed the influence of the different 
levels of the main factors TYPE and BAND on the indexes 
Symmetry (panel a) and Influence (panel b) computed 
between the anterior and posterior parts of the brain. The bar 
on each point represents the 95% confidence interval of the 
mean errors computed across the subjects. In panel a 
Duncan’s post hoc analysis (* symbol) revealed differences 
between resting and random networks in theta, lower1-alpha, 
beta and gamma bands. In particular, in theta and lower1-
alpha bands an higher number of connections in the anterior 
part of the scalp resulted in respect to the posterior part 
(S>0). The opposite situation was showed in beta and 
gamma bands (S<0). In panel b Duncan’s post hoc analysis 
revealed differences in influence index between resting and 
random networks for all the bands except theta band. The 
negative values achieved for such index revealed an high 
influence of the posterior part on the anterior part of the 
scalp for all the bands. 

IV. DISCUSSION 

The application of advanced methods for functional 
connectivity estimation to EEG signals allowed to 
reconstruct the electrophysiological properties of DMN. The 
use of PDC, its relative statistical validation and graph 
theoretical approach led to the definition of a consistent 
neuroelectrical network elicited by a population of 55 
healthy subjects during the rest condition. Such network, 
characteristic of more than 70% of the population, involved 
mainly the frontal part of the scalp in the lower bands (theta, 
lower1 and lower2 alpha) and the parietal part of the scalp in 
the higher bands (beta, gamma) as highlighted by means of 
grand average connectivity patterns. This result was 
confirmed by the statistical comparison between resting and 
random networks in terms of influences and symmetries 
between anterior and posterior part of the scalp. The same 
statistical study stated also the existence of a perfect 
symmetry between the two hemispheres during the rest 
condition.  The ANOVA study highlighted also the small 

worldness properties of the network elicited during the rest 
condition, characterized by an high local efficiency and a 
low global efficiency in respect to random graph.   

The consistent results of statistical analysis, in particular 
the values achieved for all the indexes computed on resting 
networks are uniform among the population, thus they could 
be used to build a normative database to be considered in the 
identification of pathological conditions. 

Moreover, the methodological steps performed for the 
analysis of DMN and the new graph indexes, defined for the 
purposes of this work, has been revealed as valid procedure 
for the description of the neuroelectrical properties of any 
condition.  
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