
  

 

Abstract— Deep brain stimulation (DBS) is a highly 

promising therapy for Parkinson’s disease (PD). However, most 

patients do not get full therapeutic benefit from DBS, due to its 

critical dependence on electrode location in the Subthalamic 

Nucleus (STN). For this reason, we believe that the development 

of a novel surgical tool for DBS placement, i.e., an automated 

intraoperative closed-loop DBS localization system, is essential. 

In this paper, we analyze single unit spiking activity of 120 

neurons in different STN locations collected from 4 PD patients. 

Specifically, for each neuron, we estimate a point process model 

(PPM) of the spiking activity for different depths within the 

STN by which we are able to detect pathological bursting and 

oscillations. Our results suggest that these signatures are more 

prominent in the dorsolateral part of the STN. Therefore, 

accurately placing the DBS electrode in this target may result in 

maximal therapeutic benefit with less power effort required by 

DBS. Furthermore, PPMs might be an effective tool for 

modeling of the STN neuronal activities as a function of location 

within the STN, which may pave the way towards developing a 

closed-loop navigation tool for optimal DBS electrode 

placement. 

 

I. INTRODUCTION 

An estimated 6.5 million people have Parkinson's disease 

(PD), a movement disorder with a broad spectrum of 

symptoms, like predominant resting tremor, akinesia and 

rigidity [1]. Unfortunately, there is no treatment to stop 

disease progression. Deep Brain Stimulation (DBS) injects a 

current that alters the neural activity of the diseased brain 

circuit, which may lead to a reversal of PD symptoms. When 

appropriately stimulated, patients can regain control of 

movement and reduce medication use [2]. 

Although clinically accepted, DBS has side effects and the 

therapeutic effectiveness is often limited, because of its 

critically dependence on the location of the stimulating 

electrode and the relative distance of such a location from 

the “sweet spot”, i.e., a motor-related region within the 

dorsal, lateral posterior portion of the subthalamic nucleus 

(STN) [3][4]. DBS in the sweet spot has been reported to be 

highly effective [5], with 60-70% of the implanted patients 

improving so markedly that medications are no longer 

required. The intra-operative localization and access to the 

sweet spot, however, remains a challenge as there is no 

consistent protocol used by neurosurgeons to reach this 

target accurately. 

In order to quantitatively identify this target region, a 

framework for neural modeling, estimation and control of the 

STN is needed. This framework should be different from 

existing navigation tools, which guide the neurosurgeon from 

the cortex to the STN [6][7]. Such a navigation system (Fig. 

1) consists of: (a) a predictive model that characterizes how 

the spike trains (output of G) of the neurons are generated as 

a function of STN or electrode position (neural system G); 

(b) an estimator that processes the spike trains from G to 

estimate the electrode’s distance from the sweet spot (a priori 

characterized for each patient through imaging); (c) a 

feedback controller, that accounts for the electrode’s 

navigation dynamics and “steers” the electrode (i.e., actuates 

the electrode) to move closer to the sweet spot, based on the 

distance estimated in (b). 

In this paper, we develop preliminary models of STN 

activity from spike train data collected from 120 STN 

neurons in 4 PD patients. We construct point process models 

(PPMs) for each neuron and analyze the PPM model 

parameters at several depths within the stimulation target 

[9][10]. Our results indicate that the incidence of bursting 

activity and pathological beta band oscillations are 

predominant in the dorsolateral part of the STN. This would 

suggest a depth-varying model for G, in which the 

instantaneous firing rate of the neurons changes as a function 

of the depth. 

II. METHODS 

A.  Human Data 

Four patients undergoing DBS for the treatment of PD were 

included in the study.  All patients had idiopathic PD with a 

Hoehn-Yahr score [8] of 3 or higher and had a documented 

response to L-dopa replacement therapy. All patients 

received a thorough pre-operative neurological exam. 

Patients had no cognitive impairment, active psychiatric 

disorders, or anatomic abnormalities on magnetic resonance 

imaging (MRI) [10], and none of the patients had undergone 

prior surgery for the treatment of PD. Informed consent for 

the study was obtained in strict accordance with a protocol 

approved by the Institutional Review Board at the Xuanwu 

Hospital.  

B. Electrophysiology 

Anti-PD medications were withheld the night before surgery. 

No sedatives were given prior to or during performance of 

recordings [11]. Single-unit recordings were made from the 
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Fig. 1. Schematic of DBS Navigation system. 

 
Fig. 2. Recordings taken at different depths within the STN. 

top to the bottom of the dorsal-lateral motor sub-territory of 

the STN based on stereotactic localization and 

reconstructions of the electrode trajectories [4]. Recordings 

were made at different depths along the trajectory targeting 

to the STN in .5mm increments, starting from 15 mm of 

depth (dorsal border), and going up to 28.5 mm (ventral 

border). 

We used an array of 3 tungsten microelectrodes, separated 

by 2 mm and placed in a parasagittal orientation. Neuronal 

activity was band-pass filtered (300 Hz – 6 kHz) and 

sampled at 12 kHz. Spikes were detected by using the 

continuous wavelet transform algorithm [12]. The spike 

sorting was performed with WaveClus [13]. A total of 120 

neurons across the four patients were classified by the 

neurophysiologist involved in the study as belonging to the 

STN. 

C. Point Process Modeling of STN Dynamics 

We formulate a point process model [8][14] to relate the 

spiking propensity of each STN neuron to factors associated 

with the depth of the STN recorded data as well as intrinsic 

factors such as the neuron’s own spiking history. A point 

process is a series of 0-1 random events that occur in 

continuous time. It's the model of a neural spike train and it 

can be completely characterized by its conditional intensity 

function (CIF), )|( tHtλ , defined as  

 )1(
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t
t

HtNttN
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where H
t
denotes the history of spikes up to time t . It 

follows from (1) that the probability of a single spike in a 

small interval ],( ∆+tt  is approximately  

)2(.)|()|],(Pr( ∆≅∆+ tt HtHttinspike λ  

Details can be found [8][14]-[17]. When ∆ is small, (2) is 

approximately the spiking propensity at time t. 

The CIF generalizes the rate function of a Poisson process to 

a rate function that is history dependent. Because the 

conditional intensity function completely characterizes a 

spike train, defining a model for the CIF defines a model for 

the spike train [13][15]. For our analyses, we use generalized 

linear models (GLM) [16] to fit each CIF estimate 

framework for conducting statistical inferences [17]. 

 Specifically, for each STN neuron the CIF is modeled as 

a function of (i) the neuron own spike history, and (ii) the 

spiking history of any other neuron simultaneously recorded 

For each neuron, the CIF has a multiplicative structure [18]: 

)3(),|(),|( 00 βλλ α
t

t

t HteHt ⋅=Θ  

where α is a constant history-independent term, 

),|( 00 βλ tHt describes the effect of the neuron’s own spike 

history ( 0

tH ) on the neural response, ],[ βαt≡Θ  is a 

parameter vector to be estimated from data. ),|( 00 βλ tHt is 

dimensionless. The CIF model (3) typically has a 

multiplicative structure: it is composed of distinct CIFs for 

each different kind of covariates, in order to assess how 

much each component contributes to the spiking propensity 

of the neuron. In this work, we choose to estimate the 

intensity as function of the neuron's own history. If the 

spiking history is not a significant factor associated with the 

neural response, then ),|( 00 βλ tHt  will be very close to 1 

for all time and (3) reduces to an inhomogeneous Poisson 

process. The CIF is as follows:  
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with { }55

1=
=

iiββ  and ):( baN  being the number of spikes 

observed in the time interval ),[ ba . Parameters { }10

1=iiβ  

measure the effects of the spiking history in the previous 10 

ms and therefore can capture refractoriness and/or bursting 

on the spiking probability. Parameters { }30

11=iiβ and { }45

31=iiβ  

instead, measure respectively the effect of the spike history 

from 10 to 50 ms (with 2 ms-long bins) and from 50 to 200 

ms (with 10 ms-long bins) prior the time t, and can capture 

oscillations in the beta frequency band (13-35 Hz). 

Parameters{ }55

46=iiβ  measure the effect of the spiking history 

from 200 to 500 ms (with 30 ms-long bins) prior the time t, 

and can capture oscillations in the tremor band (3-6 Hz). 

Because of its optimality properties, we choose a likelihood 

approach for fitting and analyzing the parametric model of 
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Fig. 3. Point process model parameters β for a typical STN neuron and 

their confidence bounds for a single neuron. β measures the effects of 

spiking history on the spiking propensity of the modeled neuron. 
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Fig. 5. Mean model parameters. 
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Fig. 4. Histograms of percentage of neurons exhibiting signatures in 

function of depth: A) bursting, B) β oscillations and C) tremor-band 

oscillations. 

the conditional intensity function. Parameters are efficiently 

computed using the iterative reweighted least squares 

algorithm. Goodness of fit was measured by applying the 

time-rescaling theorem for point process models and 

computing the Kolmogorov-Smirnov statistic (Johnson and 

Kotz, 1970). 

D. Point Process Analysis 

Once a point process model was estimated for each neuron at 

each recording depth, we determined whether the neuron’s 

spike train exhibited (i) prominent short term excitatory 

patterns (e.g. period <10 ms, corresponding to intra-burst 

activity), (ii) oscillations in the 15-33 Hz beta frequency 

band, and (iii) oscillations in 3-6 Hz tremor band. We 

assessed these signatures directly from the model parameters 

and their 95% confidence bounds. Specifically, a neuron has 

an excitatory pattern if one or more of the history parameters 

{ }iβ corresponding to bins in ms in the past satisfies the 

excitatory pattern condition: for at least one i in the time 

range, 1≥iLB  and 5.1≥UB , where 
ii UBeLB i ≤≤ β , and 

iLB  

and 
iUB are the 95% lower and upper confidence bounds 

of
iβ , respectively. In the following, typical signatures 

captured by our model: 

• Short-term excitatory pattern: a neuron exhibits a short 

term pattern if the model parameters{ }10

2=iiβ satisfy the 

excitatory pattern condition (Fig. 3, yellow oval). 

• 15-33 Hz Oscillations: a neuron exhibits a (non)-

stationary oscillation with frequency between 15 and 33 Hz 

if the model parameters { }32

20=iiβ satisfy the excitatory pattern 

condition (Fig. 3, blue oval). 

• 3-6 Hz Oscillations: a neuron exhibits a (non)-stationary 

oscillation with frequency between 3-6 Hz, if the model 

parameters{ }50

41=iiβ  satisfy the excitatory pattern condition 

(example not shown). 

III. RESULTS 

120 neurons were recorded and sorted from the STN across 

the four patients at several depths within the nucleus. Since 

the STN has different dimensions in each patient (its length 

ranges from 3.5mm to 6.5 mm) [3], we normalize recording 

depths, by indicating with 0 the dorsal border of the nucleus, 

and with -1 the ventral border, stepping in increments of -0.1 

(Fig. 2). Neurons were grouped on the basis of the recording 

depths, in order to allow the analysis of how many neurons 

exhibit pathological oscillations going into the stimulation 

target. A point process model was computed for each sorted 

neuron and model parameters were analyzed. 

A. Dorsoventral Patterns within STN 

The analysis of model parameters was performed, as 

indicated in section II.D, and we summarized results in the 

histograms of Fig. 4. If we look at the depth range [0, -0.5], 

corresponding to the dorso-lateral region of the STN (red 

rectangular in Fig.4), a larger number of neurons exhibit 

signatures compared to the ventral part. The analysis, in fact, 

shows that there is a prevalence to short-term/bursting 

pattern and pathological oscillations, both in the tremor and 

β-band. These results suggest that bursting pattern, that have 

been studied for a long time in the STN and other basal 

ganglia (i.e. [21]-[25]), are not uniformly distributed, and 

confirm the hypothesis that β-oscillatory activity is seen 

largely within the dorsolateral portion of the STN [4], the 

same location that seems to provide optimal therapeutic 

benefit to patient undergoing STN DBS. Therefore, the 

predominance of tremor and β-band oscillations detected in 

the dorsal STN, confirms the spatial pattern of neuronal 

oscillatory frequency distribution within the STN [1][3]. Our 

point process models appear to predict the spiking activity of 

a neuron at each STN depth. 

B.  Towards a Mean Model: parameters' analysis 

For each depth range, we computed the mean parameters 
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vector across all recorded neurons, In this way, we have a 

mean model for each depth range, and in Fig. 5.A parameters 

of this model are plotted as a function of depth. We observe 

that values of 
meanβ  become more intense (yellow-red areas) 

for depths in [0,-.5] in correspondence of 1-10 ms, 35-74 ms 

and 166-333 ms time bins. The mean model confirms the 

predominance of bursting, β and tremor oscillations in the 

dorsal portion of the STN . 

C. Statistical Test  

Fig. 4 indicated that neurons exhibiting burst activity and 

significant oscillations are localized significantly more in the 

first half of the STN than in the second one (χ
2
 test, p< 0.05). 

Furthermore, we partitioned the STN into three consecutive 

regions and found that neurons in the first 1/3 had PPM 

parameters significantly different from those in the 

remaining two regions (ANOVA test, p<0.05). 

IV. CONCLUSIONS 

On a preliminary dataset of 120 STN neurons recorded in 

four PD subjects undergoing DBS electrode placement 

surgery, we found that there our PPMs were able to capture 

short term patterns, often identified with bursting activity and 

pathological oscillations both in tremor and β-frequency 

range. Overall, these results were not uniformly distributed, 

across the STN volume but mostly localized in the dorso-

lateral portion of the STN, thus suggesting the existence of a 

sweet spot where the pathological features related to the PD 

are likely concentrated. Furthermore, the analysis of the 

PPM parameter values indicate that the signature features of 

PD in the STN neurons can be modeled as a function of the 

location, suggesting that a model for the system G in Fig.1 

can be viable. 
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