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Abstract— The spatio-temporal oscillations in EEG waves
are indicative of sensory and cognitive processing. We propose
a method to find the spatial amplitude patterns of a time-
limited waveform across multiple EEG channels. It consists
of a single iteration of multichannel matching pursuit where
the base waveform is obtained via the Hilbert transform
of a time-limited tone. The vector of extracted amplitudes
across channels is used for classification, and we analyze the
effect of deviation in temporal alignment of the waveform on
classification performance. Results for a previously published
dataset of 6 subjects show comparable results versus a more
complicated criteria-based method.

I. INTRODUCTION

The hypothesis is that brief bursts of oscillatory activity
in the brain’s electric fields, which are phase synchronized
across space, carry information by their spatial amplitude
patterns—that is, there is a specific spatial amplitude modu-
lation pattern of some waveforms in EEGs that are indicative
of the underlying sensory processing. These spatio-temporal
patterns in the EEG are referred to as ‘frames’ [1]. In
[2], the authors characterized frames at specific frequency
bands and proposed criteria for identifying them. The authors
studied the ‘frames’ as global spatial patterns related to
sensory perception and showed these patterns can be used
to discriminate simultaneous visual-auditory stimuli [2].

The procedure in [2] for identifying frames consists of lin-
ear filtering followed by a series of acceptance criteria. After
narrowband filtering the EEG at predefined frequencies, the
Hilbert transform is used to estimate the analytic phase and
amplitude of the filtered signal. First, sets of contiguous time
samples were identified where the instantaneous frequency
was within the passband and consecutive samples had the
same channels at the minimum and maximum phase. Sets of
more than 3 contiguous samples are then considered candi-
date frames. Candidate frames were discarded if the average
instantaneous frequency or the spatial phase gradient were
not within specified ranges. Finally, frames were kept if every
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sample was within thresholds for minimum instantaneous
spatial variance and maximum instantaneous phase variance.
These thresholds were determined to maximize classification
rate. The feature vector consisted of the analytic power across
channels at the time point within the frame when the total
analytic power was maximal. Due to the numerous criteria,
some of which require the electrode spacing, care must be
taken when applying this method.

In this paper, we propose a simplified approach to identify
spatial amplitude patterns associated with brief bursts of
oscillatory activity or frames. The simplification is moti-
vated by the fact that we are searching for frames that
are temporally localized, but whose exact temporal location
may shift between trials. Thus, we search over time lags
to find the largest multichannel response to a predefined
waveform. The predefined waveform constrains the temporal
and frequency aspects of the frame. In essence, it is a
single iteration of multichannel matching pursuit performed
on each waveform and trial separately. Matching pursuit [3]
has been used to find multichannel (space-time-frequency)
atomic decompositions of EEG [4]. Here we use only the
first atom for classification. We use a set of gamma-envelope
modulated tones as the waveform dictionary and search for
the best temporal alignment of the waveform per trial and
per waveform. Classification is based on projections of the
channel-wise amplitudes and is performed for each waveform
separately.

We highlight a key improvement over the original ap-
plication of multi-channel matching pursuit [4]. To avoid
phase changes across channels we use the analytic amplitude
estimated via the Hilbert transform instead of the inner prod-
uct. This allows smooth amplitude changes across different
channels that are marginally out of phase with each other.
This approach identifies the temporal location and spatial
amplitude modulation of a waveform.

We test the method’s ability to discriminate different
visual-auditory conditioning stimuli using only the spatial
pattern of amplitude of the most prominent waveform ex-
pressed as a feature vector. We evaluate our method on a
64-channel EEG dataset with 6 subjects [5]. For 5 out of
6 subjects the approximation shows statistically significant
classification at rates comparable to the previous algorithm
[2].

II. METHOD

The overall method incorporates frame identification and
binary classification of EEG trials and is covered in three
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steps:
• A. Waveform Dictionary: Define a dictionary of complex

valued waveforms localized in frequency and time. Each
waveform is the sum of a real-valued waveform and
its Hilbert transform. Here we use Gamma-modulated
tones as the base waveforms, but Morlet/Gabor wavelets
or others may be used.

• B. Frame Identification: For each waveform, find its
temporal alignment that maximizes the sum of the abso-
lute value of the inner-products, and record the vector of
absolute values from the channels, the spatial amplitude
vector. Frame identification is performed independently
on each trial without knowledge of the class label.

• C: Classification: Use the spatial amplitude vector for
classification. In this work, we use the first two principal
components before using nearest–centroid classification.
The class means are estimated from examples in the
training set. The remaining trials are assigned to the
nearest class mean, and classification performance is
evaluated.

A. Waveform Dictionary

Let x ∈ CN be a frame waveform, which corresponds to
the temporal aspect of the spatio-temporal frame. The frame
waveform we use is the “analytic” signal version of a real
discrete-time waveform. The discrete-time Hilbert transform
estimate of the “analytic” signal [6] of a candidate waveform
m is x =

√
−1h(m) + m where h(·) denotes Hilbert

transform. The Hilbert transform is realized by filtering; for
discrete time signals h(m) can be efficiently computed as
multiplication in the frequency domain using the FFT and
is implemented in the MATLAB function hilbert. Frame
identification involves taking the inner-product of the wave-
form with the signal at different lags (convolution); thus, the
waveform can be thought of as a time-reversed filter. Since
filtering commutes, performing the Hilbert transform on the
waveform before convolving with the signal of interest is
equivalent and much faster than taking the Hilbert transform
of the convolved signal. The Hilbert transform provides a
very smooth estimate of the signal peak (as seen in Fig. 1),
which will be essential to find the peak across multiple
channels that have different phases.

|(f*m)(t)|

|(f*h(m))(t)|

|h((f*m)(t)|

Fig. 1. Comparison of the amplitude of a filtered signal |(f ∗ m)(t)|,
the “analytic” amplitude (using the Hilbert transform) of a filtered signal
|h((f ∗m)(t))|, with the amplitude of a signal filtered with a “analytic”
filter |(f ∗ h(m))(t)|. There is no noticeable difference in the latter two.

For candidate waveforms, we chose second-order gamma
enveloped sinusoids because of the differential rise and fall
time often seen in neural oscillations [7]. The base waveform
for center frequency fc is m(n) = g(n) sin(2πfcn) where
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Fig. 2. Frame waveforms x, black solid lines are real components m
and dashed blue lines are imaginary components derived from the Hilbert
transform h(m). The length of the waveforms is 180.

the envelope g(n) = n2e−2πbn has bandwidth b. In particu-
lar, we chose 15 center frequencies evenly spaced from 15Hz
to 64Hz and a bandwidth of 7.7Hz for analysis—a similar
choice and more discussion of the effect of bandwidth on
the distribution of intervals between minima in the analytic
amplitude of filtered EEG signals can be found in [2]. See
Fig. 2 for resulting waveforms. The choice in waveforms
can vary; we found that using Gamma envelopes performed
better than Gaussian envelopes (Gabor wavelets).

B. Frame Identification

Let Y = [y1 · · ·yM ] ∈ RL×M be a L length window of
EEG from M channels and x ∈ CN×1, N ≤ L be a particu-
lar temporal frame waveform. A frame is characterized by the
temporal waveform x, its temporal alignment τ? ∈ Z, and
its channel amplitudes v = [v1 · · · vM ] ∈ R1×M . The goal is
to align x to maximize the sum of the inner products with
y1, . . . ,yM . Define Tτ to be the linear operator CN×1 7→
CL×1 such that Tτx temporally aligns a waveform x such
that it starts at time τ . Then τ − 1 is the number of zeros
that need to be pre-padded to x; if τ < 1 the initial 1 − τ
elements of x are truncated, and if τ > L−N + 1 the final
τ − (L − N + 1) elements are truncated. Fig. 3 shows the
range of alignments for x,ym.

The temporal alignment τ? and channel amplitudes v are
found via (1) and (2).

τ∗ = argmaxτ

M∑
m=1

| < ym, Tτx > | (1)

vm = | < ym, Tτ?x > | m = 1, . . . ,M (2)

For notational compactness, we denote the function fx(.)
that maps Y , a window of EEG, to the channel amplitudes v
for frame waveform x—that is, fx(Y ) = v, fx : RL×M 7→
R1×M .
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Fig. 3. The possible alignment ranges for τ ∈ {−N+2, . . . , 1, . . . , L}
of a frame waveform x of length N to a single channel of the L-length
signal ym.

C. Classification

We are interested in how well the frame identification can
identify common spatial features of sensory perception. We
found that using the first two principal components from the
matrix of the channel amplitudes across training trials was
enough for classification.

Let the set of trials be denoted {(Yi, ci)}Ti=1 where Yi ∈
RL×M are the discrete time sampled EEG traces with L
samples and M channels and ci ∈ {1, 2} is the discrete
binary class label.

Let Itrain, Itest be the indexes of trials for training and
testing such that Itrain ∪ Itest = {1, . . . , T} and Itrain ∩
Itest = ∅. Define a matrix where each column is the
channel amplitudes for a trial V = [fx(Yi)

T]i∈Itrain . Find
the singular vector decomposition of V = USWT such that
U = [u1 · · ·u|Itest|] and W are unitary matrices and S is a
diagonal matrix. We project onto the first two eigenvectors
denoting the function gx(Y ) = fx(Y )[u1u2].

We choose a simple nearest centroid method as our
classifier. Here we do not use the temporal timing of the
frame τ?, we will only need the function gx that gives the
projection of the channel amplitudes onto the singular vectors
for a particular frame waveform x. The class mean for class
k is

v̄k =
1

|Iktrain|
∑

i∈{l∈Itrain:cl=k}

gx(Yi) (3)

where |A| is the cardinality of set A. Each sample in the
test set is then classified by the nearest class mean using
Euclidean distance.

ĉi = argmink‖v̄k − gx(Yi)‖ i ∈ Itest (4)

A measure of performance is simply the percent of correct
classifications

pcorrect =
|{i ∈ Itest : ĉi = ci}|

|Itest|
. (5)

III. DATASET AND RESULTS

Data was collected at the Psychology Department of the
University of California Berkeley and approved by the UC
Berkeley Institutional Review Board. Six male subjects (five
right handed) aged 23 to 44 gave informed consent. The
original description of the experiment can be found in [5].

Subjects were presented with a combined auditory and visual
stimuli: a monitor displayed either a solid red or blue pattern
for 125ms and simultaneously either a comfortable loud or
much softer 100ms burst of white noise from two speakers on
either sides of the monitor. Only three patterns were applied:
solid red with a loud tone or a solid blue pattern with a soft
tone or a solid blue pattern with a loud tone. The subjects
had a keyboard with three keys and were instructed to learn
correspondence between the keys and the stimuli by trial
and error. The monitor would give text feedback as soon
as a key was pressed. There were two blocks: in the first
block 180 presentations were given and feedback was also
random (no learning was possible), and in the second block
200 presentations were given and correct feedback was given.
We are interested in discriminating between the first two
classes of sensory cues (red-loud versus blue-soft) from the
EEG alone without the key press information.

The EEG was recorded with a 64 electrode cap using the
BioSemiTM system. The analog filtering had a pass band
of DC to 134 Hz. The sampling rate was 512 Hz. After
importing to MATLAB, a digital notch filter was used to
remove 60Hz and 180Hz line noise, and a digital high-pass
was used with cutoff of 1 Hz. There were at least 50 trials
per class per block. Classification performance was tested
across 200 Monte Carlo divisions of the trials between 70
trials for testing (35 trials from each class) and the remaining
trials for training.

The frame identification and classification was performed
for each frame waveform in Fig. 2 in different 0.5s length
windows surrounding the sensory cue.

There were 5 subjects {S1, S2, S3, S5, S6} with classifi-
cation performance significantly better than chance p < 0.01
(198/200 Monte Carlo runs had better than 50% correct). An
example of the classification performance across frequency
and different time intervals is shown in Fig. 4. The mean
classification rate for the best performing waveform for each
subject is shown in Fig. 5.

B1

B2

pcorrect 
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center frequency (Hz)
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(−1.5,−1) s
(−1,−.5) s
(−2.5,.25) s
(0,.5) s
(.25,.75) s
(.5,1) s
(.75,1.25) s

Fig. 4. Example of the classification performance (Subject 1) on both
blocks {B1, B2}, versus the center frequency of the frame waveforms.
Each line indicates a different time window relative to the cue from which
the frames were extracted. Small markers above traces indicate significantly
better than chance classification performance p < 0.01 for 200 Monte Carlo
runs.

The temporal alignment of the frames for subjects with
significant classification in both blocks is shown in Fig. 6.

2533



(−1.5,−1)s (−1,−0.5)s (−0.25,0.25)s (0,0.5)s (0.25,0.75)s (0.5,1)s (0.75,1.25)s

0.5

0.6

0.75

0.9
Mean Prediction Rate

time interval (s)
(relative to cue)

p
re

d
ic

ti
o

n
 r

a
te

 

 
S1,B1 16.8Hz

S2,B1 10.8Hz

S3,B1 22.6Hz

S4,B1 35.3Hz

S5,B1 30.5Hz

S6,B1 30.5Hz

S1,B2 16.8Hz

S2,B2 10.8Hz

S3,B2 22.6Hz

S4,B2 35.3Hz

S5,B2 30.5Hz

S6,B2 30.5Hz

Fig. 5. The mean classification performance, pcorrect in (5), for the best
performing waveform (frequency listed in legend) for each subject. The
mean is taken over the 200 Monte Carlo divisions of the trials into test and
training sets.

time (s)

c1

c2

frame alignment
S1

S5

S6

B1 B2

-0.25 0.25 time (s)-0.25 0.25

Fig. 6. (Left) The classwise (c1, c2) distribution of frame alignments
for three subjects, {S1, S5, S6}, at their best performing frequency
16.8, 30.5, 30.5Hz respectively. The same waveform is used for both blocks
{B1, B2} and the time interval (-.25,.25)s is shown.

IV. DISCUSSION

While the method is meant to find global spatial patterns
of amplitude modulation irrespective of time lag, we did find
a strong inverse correlation between the standard deviation
in the timing of the frames and the prediction rate.

A mode in the temporal alignment of the frames for both
stimuli is seen in Fig. 6. Whereas, there was no consistent
temporal alignment of the frames for the other subjects
(data not shown), with almost uniform distribution of frame
alignment. Either the subjects do not have consistently timed
spatial patterns or the current method is not able to find them.

The relationship between frame timing and prediction is
consistent across subjects and within subjects across data
blocks as seen in Fig. 7; consequently, the variance of
the temporal alignment could be used as pre-classification
feature selection criterion. A more comprehensive classifier
may choose a set of multiple waveforms that all have low
variance in the temporal alignment; however, this approach
would need testing on more subjects.

We chose not to make a direct comparison of the proposed
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Fig. 7. The standard deviation of frame alignments in class c1 for all wave-
forms versus the waveforms prediction performance in the interval(0,0.5)s.

method versus the previous work [2] since the previous work
uses two classification optimized thresholds. Overall, the
results are comparable, but the proposed method is much
simpler to implement and requires no knowledge of the
electrode location. Thus, it can be readily applied to other
datasets such as those used for brain computer interfaces.

V. CONCLUSION

Brain oscillations are thought to carry prominent signa-
tures of underlaying sensory activity in brain. However, the
activity may not be time locked to a trial nor phase locked
over the scalp. In this study, we apply a method to find
the amplitude modulation of predefined waveforms across
multiple EEG channels and utilize the spatio-temporal infor-
mation to discriminate between two different sensory stimuli.
Finding the best alignment of a pre-defined waveform yields
significant classification accuracy across five out of six of
the subjects.

REFERENCES

[1] W. J. Freeman, “Origin, structure, and role of background EEG activity.
part 1. analytic amplitude,” Clinical Neurophysiology, vol. 115, no. 9,
pp. 2077–2088, Sep. 2004.

[2] Y. Ruiz, S. Pockett, W. J. Freeman, E. Gonzalez, and G. Li, “A method
to study global spatial patterns related to sensory perception in scalp
EEG.” Journal of neuroscience methods, vol. 191, no. 1, pp. 110–118,
Aug. 2010.

[3] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” Signal Processing, IEEE Transactions on, vol. 41, no. 12,
pp. 3397–3415, December 1993.

[4] P. Durka, A. Matysiak, E. Montes, P. Sosa, and K. Blinowska, “Mul-
tichannel matching pursuit and EEG inverse solutions,” Journal of
Neuroscience Methods, vol. 148, no. 1, pp. 49–59, Oct. 2005.

[5] S. Pockett, G. Bold, and W. Freeman, “EEG synchrony during a
perceptual-cognitive task: Widespread phase synchrony at all frequen-
cies,” Clinical Neurophysiology, vol. 120, no. 4, pp. 695–708, 2009.

[6] L. Marple Jr, “Computing the discrete-time analytic signal via fft,”
Signal Processing, IEEE Transactions on, vol. 47, no. 9, pp. 2600–
2603, 1999.

[7] W. Freeman, Mass action in the nervous system. Academic Press New
York, 1975.

2534


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

