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Abstract— Recently, we have shown that denoising evoked
potential (EP) images is possible using twodimensional diffusion
filtering methods. This restoration allows for an integration
of regularities over multiple stimulations into the denoising
process. In the present work we propose the nonlocal means
(NLM) method for EP image denoising. The EP images were
constructed using auditory brainstem responses (ABR) collected
in young healthy subjects using frequency specific and broad-
band chirp stimulations. It is concluded that the NLM method
is more efficient than conventional approaches in EP imaging
denoising, specially in the case of ABRs, where the relevant
information can be easily masked by the ongoing EEG activity,
i.e., signals suffer from rather low signal-to-noise ratio SNR.
The proposed approach is for the a posteriori denoising of single
trials after the experiment and not for real time applications.

I. INTRODUCTION

Providing a stimulus (auditory, visual, somatosensory etc.)
to a subject while recording an electroencephalogram (EEG),
one can define equally sized segments of the EEG being
time-locked to the stimulus. These epochs si(t), i = 1, ..., N ,
called single–sweeps, single–trials or in a nutshell sweeps
may show voltage changes specifically related to the brain’s
response to the stimulus. These voltage changes are called
evoked potentials (EPs). Auditory evoked potentials appear-
ing in the first ten milliseconds are referred to auditory brain-
stem responses (ABRs). Jewett and Williston [5] suggest
a chronological roman numbering of the elicited dominant
peaks from I to VII in the ABR. Wave V appears to be the
most prominent wave with the highest amplitude. Based on
this observation, the detection of wave V has grown to be a
suitable indicating method for providing information regard-
ing auditory function and hearing sensitivity. One prominent
application is the newborn hearing screening (NHS) (see e.g.
[3]), where hearing thresholds are objectively determined
by means of detecting the wave V. Further, by measuring
the absolute latencies of the first five waves and the inter–
peak intervals I − III , III − V and I − V , retrocochlear
pathologies and frequency-specific estimation of auditory
sensitivity can be discovered, too. Being neural correlates of
sensory and cognitive processing, ABRs and their analysis
will be applicable in clinical neuroelectrodiagnostics. The
direct analysis of the single–sweeps is difficult as background
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activity (EEG components being not related to the event
or stimulus), background noise or artifacts mask the ABR
component resulting in a bad signal–to–noise ratio (SNR).
To obtain a meaningful ABR waveform, the sweeps can
be pointwise averaged, i.e., s(t) = 1

N

∑N
i=1 si(t) (see Fig.

1 (top)). Based on the so–called signal–plus–noise model
which states that a signal only consists of a stimulus-locked
evoked component plus independent stationary background
noise, this averaging method shows an improvement of
the SNR with

√
N . The averaging technique is the most

commonly used approach to detect small stimulus-locked
and exogenous evoked potentials embedded in noise. But
considering morphological changes of ABR components
during measurements as a result of effects of non–stationary
endogenous conditions such as attention or vigilance, obvi-
ously these changes will not be visible in the final average.
Even changing a solution strategy during a task affects the
morphology of an ABR and is therefore not visible, too.
Furthermore, the analysis of individual sweeps per se is not
possible due to a poor SNR. In [6] we introduced a two–
dimensional image processing technique for the denoising of
single-sweeps by means of the so-called ERP image (single–
sweeps in matrix representation, see Fig. 1 (bottom) for an
example). The amplitudes of the sweeps are encoded in a
color–scale map (yellow to white colors represent high values
and dark red to black colors represent small values). We keep
the idea of two-dimensional single-sweep denoising. In this
paper we introduce a nonlocal approach in order to denoise
ABR images (ABRIs).

II. MATERIALS AND METHODS
A. Denoising of ABRIs by Nonlocal Means

Let A = {sn ∈ RM : n = 1, 2, ..., N} be a set of
N sampled ABR single–sweeps within the time interval
[0,M/fs] (fs is the sampling frequency) of a particular
experiment. From A we can construct the ABRI S ∈ RN×M

such that S = (s1, s2, ..., sN )T . As mentioned in the previous
section the evoked individual sweeps sn of S are time-
locked to the stimulation for fixed stimulus settings. Hence,
those responses result in morphologically stable transient
potential fluctuations that form the typical ABR component
(Fig. 1 (top)). Such reproducible fluctuations yield correlated
intervals in the rows of S and induces self–similarity in the
ABRI.
The nonlocal mean (NL–mean) method suggested indepen-
dently in [9] and [10] exploit the self–similarity in the ABRI
by so–called image patch methods. Here, we adjust the NL–
means algorithm for our ABR image denoising problem and
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Fig. 1. Top: The commonly used averaged signal showing the wave V at
approximately 7ms; Middle: Single sweeps (individual responses); Bottom:
Single sweeps in matrix representation, where the amplitude is encoded in a
color-scale map (yellow to white colors represent high values and dark red
to black colors represent small values). A very fine vertical trace at around
7ms is discernable. Possible amplitude fluctuations or latency shifts would
be visible in the ABRI, but not in the mean response. All time axes start at
stimulus offset.

refer to [9], [10] for more general discussions and for general
performance comparisons.
In contrast to conventional one–dimensional ABR denoising
procedures D1 : sn 7→ s̃n, where s̃n ∈ RM is a denoised
version of sn, we are interested in a denoising operator D2 :
S 7→ Q, where Q ∈ RN×M is the denoised version of the
two–dimensional ABRI S. From Q = (q1,q2, . . . ,qn)

T the
individual denoised sweeps qn ∈ RM (n = 1, 2, . . . , N ) can
be extracted after the two–dimensional denoising process.
Physiologically meaningful amplitude and latency changes
can be extracted from qn, see Fig. 3 for an example.
Thus the D2–denoising approach allows for an integration
of regularities over multiple stimulations into the denoising
process. Note that the inclusion of such regularities, although
significant in ABR experiments, is completely missing in
D1–denoising schemes. To apply the NL–means algorithm

for the aforementioned D2 denoising of ABR images, each
sample (i.e., entry or pixel in S) si, i = 1, . . . , J with
J = NM , is replaced by a denoised version qi in the
following way: Each pixel si is compared together with its
neighborhood to other ABRI patches (i.e., the very same
neighborhoods of other pixels sj). For each comparison a
weight coefficient ξi,j ∈ R (i, j = 1, . . . , J is assigned to
the center pixel si, depending on the similarity of the image
patches, i.e., the similarity of the neighborhood of si to the
neighborhood of sj . The restored/denoised entry qi is now
the weighted average of all the surrounding entries in S such
that

qi =
1

γi

J∑
j=1

ξi,jsj , (1)

with γi =
∑J

j=1 ξi,j . Let I be an appropriate index set
such that the two–dimensional patches of the ABRI with
the centers si and sj are given by si+I and sj+I . We
further introduce the vector φσ = (φσ,k)k∈I which denotes
a sampled version of a two–dimensional Gaussian kernel
with standard deviation σ. The weights which quantify the
similarity of si+I to sj+I are now given by

ξi,j = exp

(
− 1

λ

∑
k∈I

φσ,k|si+I − sj+I |2
)
. (2)

The parameter σ is steering the influence of neighboring
pixels on the weight and λ > 0 is controlling the amount of
denoising. The application of (1) to all pixels in the ABRI
finally yields its denoised version Q. Each row in Q is now
the denoised single sweep qn of sn (n = 1, . . . , N ), but
in contrast to conventional 1D procedures, stemming from a
D2–denoising process. In order to reduce the computational
load, we use the ”search window” implementation proposed
in [9] in our computations. We used a 15 × 15 patch and
σ = (0.5, 5.0)T for the numerical experiments in Sec. III.

B. Stimulus Selection

It is well known that the cochlear is tonotopically orga-
nized [1]. That means, different areas of the cochlea are only
sensitive to certain frequencies. The base is more sensitive
to higher frequencies and the apex is more sensitive to lower
frequencies. Therefore, a signal containing low frequencies
takes a longer time to reach the sensation locus. Compared to
clicks, the high frequencies of a chirp are delayed from the
low frequencies to compensate the temporal dispersion of the
basilar membrane and to stimulate specific areas along the
cochlear. Additionally, the chirps are designed to start and
end exactly with zero to avoid stimulation of undesired areas
due to abrupt onset or offset stimulation. It has been shown
that chirp stimulations show better performance for evoking
ABRs than click stimulations, especially at low intensity
levels [8]. Further, Gorga et al. [4] showed, that the latency
of the wave V is related to the frequency and to the intensity
of the stimulus. We decided to use five different chirps for
our ABR measurements (see Table I and [2] for detailed
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information). One is a broadband chirp containing frequen-
cies from 100Hz to 10kHz and the remaining four chirps are
sub-bands containing only certain frequency intervals.

TABLE I
FREQUENCY SPECIFIC CHIRPS

Chirp Center Frequency (Hz) Interval (Hz) Duration (ms)
Ch1 302 [108,490] 6.19
Ch2 813 [495,1135] 2.02
Ch3 1915 [1230,2600] 0.88
Ch4 6725 [2950,10500] 0.51
B-b 5050 [100,10000] 10.12

C. ABR Data

The chirp-evoked ABRs were collected from ten student
volunteers (mean age: 25.1±3 years; four female, six male)
with no history of hearing problems and normal hearing
thresholds (below 15dB (HL)) checked by an audiogram.
Ag/AgCl electrodes were attached (according to the 10–
20 system) ipsilateral to the stimulus at the right mastoid
(A1), at the vertex (Cz) as a common reference and at the
upper forehead (Fpz) serving as a ground. Impedances were
kept below 5kΩ during the measurements. A total of 3000
sweeps (artifacts were removed by an amplitude threshold
of 15µV ) were recorded for each chirp. The ABRs were
acquired by a high-end 24 bit biosignal amplifier (gUSBamp,
gTec, Austria) using a sampling frequency of 19.2 kHz and a
bandpass filter with low and high cutoff frequencies of 0.1Hz
and 1.5kHz, respectively. Additionally, a 50Hz notch filter is
applied.
We used the EEG simulator of [12], [13] to generate a set
of synthetic data with a SNR of 1 with the classical signal–
plus–noise approach. The synthetic ABR data were trials of
the mean of our ABR measurements.

D. Objective Evaluation Criteria

To estimate the residual noise, we denote the averaged
ABR (mean) by s̄ = 1

N

∑N
i=1 si. The residual noise estima-

tion is computed as suggested in [11] by

gm =

√√√√ 1

N(N − 1)

N∑
n=1

(sn,m − s̄m)2, (m = 1, 2, ...,M)

(3)
which we further reduce to a residual noise quantifying scalar
value by

α = ∥g∥22 =
M∑

m=1

g2m (4)

The ABR–reproducibility allows for another quantification of
the ABR quality. For this, we decompose the ABRI S into
two sub–matrices Se and So which carry the responses for
even (upper index e) and odd (upper index o) numbered
stimulations n (n = 1, 2, . . . , N , N even) or rows of S,
respectively. Let us denote the averaged even and odd ABR
data by se/o = 1

N

∑N/2
n=1 s

e/o
n (se/o ∈ RM ) and the addi-

tional average over the time by s̃e/o = 1
M

∑M
m=1 s

e/o
m . The

ABR–reproducibility is now just the Pearson’s correlation

coefficient β ∈ [−1, 1] between the average of the even and
odd numbered trials

β =

∑M
m=1(s

e
m − s̃e)(som − s̃o)√∑M

m=1(s
e
m − s̃e)2

√∑M
m=1(s

o
m − s̃o)2

(5)

III. RESULTS

Fig. 2. Top: ABRI of 500 sweeps (where the amplitude is encoded in a
color-scale map (yellow to white colors represent high values and dark red
to black colors represent small values)) of one subject with the respective
mean plotted on top. Stimulus: frequency-specific chirp ”Ch2” presented at
50 dB (SPL). Bottom: NL–mean processed ABRI. The trace of the wave V
is clearly visible after applying the NL–mean method. Possible amplitude
fluctuations or latency shifts could be made visible in the ABRI. Note how
the NL–mean method affects the average. Time axes start at stimulus onset.

Fig. 3. Single–sweep enhancement. One sweep (number 111) of the
unprocessed (red) and processed (blue) ABRI is compared to each other
and to the average (black) of a whole measurement (3000 sweeps). Note
the smoothing effect of the NL–mean method (blue) to the average. The
processed sweep number 111 clearly shows the prominent wave V peak
whereas the unprocessed sweep does not.

Fig. 2 shows exemplarily the result of applying the NL–
mean method to an ABRI. The wave V trace is clearly
visible. This implies an individual analysis of the trials which
can be seen in Fig. 3. Here, one single–trial is compared to
its denoised version and to the overall mean of 3000 sweeps.
The denoised sweep recovers its morphology.
In section II-D we estimate the residual noise scalar value
α by calculating the variances over the sweeps. Larger
variances result in larger values of α.

2529



Analyzing how well the structure of the ABRI is preserved
is an impossible task since the noise model and thus the
”real sweep” is unknown. However, in the case of synthetic
data, the noise is superimposed to the signal according
to the model described in II-C. In order to evaluate the
deterioration of the original sweep morphology, we computed
the Pearson’s correlation coefficient between the denoised
sweeps from the signal–plus–noise model to the sweeps
without added noise. The result for the synthetic data for
the NL–mean method is shown in Fig. 4.

Fig. 4. Top: The Pearson’s correlation coefficient β between the NL–mean
processed ABR and the ABR without noise. The morphology is preserved by
increasing λ. Bottom: The residual noise of the NL–mean processed ABR
decreases by increasing λ. The residual noise of the the original ABRI is
due to its synthetic properties very low compared to the real data.

IV. DISCUSSION
Time–locked responses result in typical traces in the

ABRI. Depending on the stimulus settings, these traces vary.
Obviously, those changes will not be visible in an average.
The main advantage of using the NL–mean processed ABRIs
is the possibility to a posteriori analyze every individual
sweep extracted from the denoised image with respect to the
clinical relevant and experimentally established parameters
such as latency or amplitude.
Fig. 2 shows the improvement of the detection of the wave
V after denoising. Due to the better visibility of the wave V
trace, the ABRIs are suitable for the analysis of the common
parameters. Additionally, possible fluctuations in amplitude
or latency shifts during the measurement could be made
visible. The importance of the visualization of these vari-
ations during the experiment is obviously, if we think of the
correlation of tinnitus-phenomena with prolonged latencies
[7]. In contrast to conventional D1 approaches which only
consider pre- and post–stimulus interval, regularities in the
data over multiple stimulations can also be integrated into
the D2–denoising processes.
The paper has not the intention to estimate or to tune the
parameters used in the method. It is important to know,
that this two–dimensional denoising approach can be adapted
to individual applications, improving the performance. Note

that the method as presented in this paper is not suitable for
real time processing. However, the results show a significant
improvement in the wave V detection and allow the analysis
of individual sweeps while preserving their morphology (see
for Fig. 4 (top)).

V. CONCLUSIONS

In this paper we have shown, how the self–similarity of an
ABRI can be exploited for the denoising by nonlocal means.
It is shown, that the resulting ABRIs contain less residual
noise by preserving their morphology and allow for a clear
identification of the wave V. It is concluded that the NL–
mean method might be a promising new approach in the
field of denoising ABR data and a posteriori single sweep
analysis.
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