
Abstract— Recently a number of new beamformers have 

been introduced for reconstruction and localization of neural 

sources from EEG and MEG. However, little is known about 

the relative performance of these beamformers. In this study, 8 

scalar beamformers were examined with respect to several 

parameters to determine how effective they are at 

reconstruction of a dipole time course from EEG. A simulated 

EEG signal was produced by means of forward head modelling 

for projection of an artificial dipole on scalp electrodes then 

superimposed on background signal. Both real EEG and white 

noise were applied as background activity. Although the 

eigenspace beamformer can perform slightly better than other 

beamformers for small dipoles, and even more so for large 

dipoles, it is not a contender for real-time beamforming of EEG 

as it cannot be completely automated. Overall, in terms of 

performance, robustness to variations in parameters, and ease 

of application, the minimum variance and Borgiotti-Kaplan 

beamformers were found to be the best performers.  

I. INTRODUCTION

In recent years, new beamformers have been introduced 
for brain source localization and reconstruction from EEG 
and MEG [1-4]. The beamformer provides a versatile form of 
spatial filtering suitable for processing data from an array of 
sensors [1]. Beamformers were originally applied in array 
signal processing including sonar, radar and seismic 
exploration [5]. A beamformer in EEG and MEG is a spatial 
filter applied to any location in the brain and by attenuating 
the effects of sources from all other locations, the 
beamformer allows us to estimate the source at that particular 
spatial location from a segment of EEG [6].  

Beamformers applied to EEG or MEG fall into two main 

categories: (A) scalar beamformer for which the orientation 

of the dipole is known or assumed and (B) vector 

beamformers which reconstruct the dipole time course in 3 

orthogonal directions and does not require knowledge of the 

dipole orientation in advance. For this study, 8 scalar 
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beamformers  were evaluated: (1) minimum variance (MV), 

(2) generalized side lobe canceller form of  minimum 

variance (GSC) [7], (3) weight normalized minimum 

variance (WNMV) [3], (4) standardized minimum variance 

(SMV) [3], (5) Borgiotti-Kaplan (BK) [8], (6) eigenspace 

extension of the minimum variance (ESMV), (7) array-gain 

constraint minimum-norm with recursively updated Gram 

matrix (AGCMN) [4], and (8) higher order covariance 

matrix of minimum variance (HOC) [2].  

In this study we used numerical simulation to evaluate 

the performance of beamformers for the reconstruction of a 

known dipole time course when depth, magnitude, position, 

orientation, interference, and background signal are varied. 

Throughout this paper, plain italics indicate scalars, 

lower case boldface italics indicate vectors, and upper case 

boldface italics indicate matrices. 

II. METHODS 

A. Forward problem 

The simulated EEG signals on � electrodes at time � are 
���� � ��	���, �����,… , �
���� where

 (1) 

where � � 15000, is the number of time samples ����� �
�������, ������, ������� is a � � 3 leadfield matrix which 

shows the sensitivity of � EEG electrodes for a dipole 

located at �� � ����, ��� , ����
�
�mm� in the head, ! � "!� is 

the dipole moment in A-m, !� � �#�� , #�� , #���
�
 is the 

normalized dipole orientation for which |!�| � 1, " is the 
dipole magnitude, %��� is the dipole time course with 
normalized magnitude,  and &��� is the additive background 
signal which can be white noise or real EEG. In this study, a 
sinusoidal signal was used as the dipole time course 

%��� � sin�2+,��																															�2�	

where , is the dipole frequency, , � 10 Hz. The normalized 
leadfield (�/‖�‖) was used for this study. 

B. Beamformer 

 The reconstructed dipole time course from the EEG for a 
scalar beamformer is 

%̂��� � 3��4 , !4�����, (3)

where �4 and !4 are the estimated dipole location and 
orientation respectively for calculation of the beamformer 
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weight and ���� , ��� is weight vector for the scalar 
beamformer 

���� , ��� � 	�
��� , ���, ����� , ���, ����� , ���
.   (4)

The covariance matrix is calculated from 

� � �����������,																																	(5)

where �. � is the ensemble average.  

C. Performance measures  

Performance of the beamformers was estimated by 

signal-to-noise ratio of the output (������) and 

enhancement ratio (��). All of the power measures � were 

calculated over the last 30 s of ���� by FFT.  

����� is the ratio of the summation of the power of the 

dipole on input channels, ����, divided by the summation of 

the power of background signal on the input channels, ��� : 

 (6) 

where ���� is the power of �!������"��� and ���  is the 
power of #��� for a given time window. In the ideal case, 
����� does not depend on dipole location and orientation, 
�� and ��, and depends only on dipole magnitude $. Based 
on our simulations, ����� can change slightly with variation 
in dipole location and orientation.

������ is the output power of the beamformer at the 

frequency of the dipole, ����%& '�, divided by the total 

power of the beamformer output less the power at the 

frequency of the dipole 

               (7) 

Although there are simpler methods to compute �����, 

such as Frobenius norm of the signal matrix to that of the 

noise matrix, we cannot compute ������ by this method as 

the signal and noise on the output are not available in 

separate matrices.  

�����()* is the highest ��� at any electrode found by 

dividing the power of the dipole at each input channel 

(�+,-����� , � is channel 1, 2, ... 64 in the EEG 10-20 

system) by the power of the background signal in the same 

channel (�+,-���� �

                      (8) 

The enhancement ratio ER is then defined as

                                   (9)

III. COMPUTER SIMULATIONS

A. Simulated EEG signal 

60 s of EEG signal was simulated by means of a 30 s 

sinusoidal signal (10 Hz) projected on the scalp via forward 

head modelling and superimposed on the background signal 

(real EEG or white noise). The first 30 s of the simulated 

EEG signal is only the background signal, #���. The 

boundary element method (BEM) model of the head [9] 

from an averaged MRI data set (Montreal Neurological 

Institute), implemented in the FieldTrip toolbox [10], was 

used for the forward solution. The real EEG data used as 

additive background signal in this study was obtained from 

an earlier study of healthy subjects [11]. The mapping 
standard 10-20 system was used to define the location of the 

64 electrodes and the reference electrode was between the 

CZ and CPZ electrodes. 

B. Parameters for evaluation of the beamformers 

(1) Depth of dipole 

To assess the effect of depth of dipole on beamformer 

performance, the dipole moment � was fixed, while the 

dipole depth was varied. For this experiment, depth is the 

distance of the dipole from a scalp point close to the ear at 

MNI coordinate [84, -35, 0](mm), and the dipole moved 

from the right ear towards the left ear.  

(2) Dipole magnitude 

To assess the effect of varying dipole magnitudes on 

beamformer performance, the position �� and orientation ��
of the dipole were fixed, while different magnitudes $ were 

assigned to the dipole.  

(3) Misestimation of dipole position 

The ideal is for the position of the beamformer, �� where 

�� � 	.�
 , .�� , .��

�
�mm�, to be the same as that of the 

dipole, ��. However, in practice, the exact location of the 

dipole is not known in advance, i.e., �� 0 ��. For this 

investigation, beamformers were run at increasing distances 

from the actual location of the dipole. 

(4) Misestimation of dipole orientation 

For scalar beamformers, an estimate of the orientation of 

the dipole needs to be given, with incorrect estimation 

leading to degraded performance of the beamformer. The 

beamformer output power is maximum when the estimated 

dipole orientation applied in the beamformer is equal to the 

actual orientation of the dipole, i.e., �� � �� [12], where 

�� � 	1�
 , 1�� , 1��

�
 is the estimated dipole orientation and 

|��| � 1. For this part, while the �� stayed constant, 

different values of �� were applied for beamformers to see 

how sensitive beamformers are to misestimation of dipole 

orientation. 

(5) Interference from another dipole source signal 

To assess the effect of interference, a second dipole 

source (10.4 Hz) was placed at different distances (0 to 18 

mm) from the original dipole (10 Hz), and also 

superimposed on the background signal. The power of the 

beamformer output was measured at the frequency of the 
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dipole of interest and that of interfering dipole. The signal-

to-interference ratio (���) is defined as 

                        (10) 

(6) Additive background signal 

To assess the effect of different types of additive 

background signal ����, two types of  background signal 

were superimposed on the dipole signal: white noise and 

real EEG. EEG data from five subjects were used to 

determine differences in beamformer performance between 

different EEGs and even white noise. The use of real EEG 

data as additive background signal is also reported in [13] 

and [7]. Most of the signals picked up by EEG or MEG are 

produced by simultaneous activation of tens of thousands of 

neurons [14] acting coherently in the cortical gray matter 

[15]. Consequently, when real EEG was used as additive 

background we put the dipole in the white matter (except in 

the experiment where we were assessing the effect of dipole 

depth). This helped ensure that background activity 

appearing in the beamformer output was not coming from 

the same place as the dipole. In Fig. 1 to 5, real EEG from 

subject 102 was used as additive background signal.  

IV. RESULTS

(1) Depth of dipole 

When a dipole was moved from a cortical to a deeper 

(change in �	), the �
���� of all beamformers decreased 

but not nearly as much as �
�
����. Hence, �� increases 

with depth of dipole (Fig. 1). That is, beamformers are better 
able to reconstruct electrical activity from cortical dipoles 

but, conversely, deeper signals are enhanced more.  

(2) Dipole magnitude 

It is clear that beamformers are non-linear and better 

able to enhance small dipole signals (Fig. 2). 

(3)  Misestimation of dipole position 

Most of the beamformers had similar behaviour to each 

other when misestimating the dipole position (Fig. 3). The 

drop off in �� with separation of beamformer and dipole is, 

however, also dependent on the depth of the dipole. For 

deeper dipoles, misestimation of dipole position caused 

much less drop in the beamformer �
���� than for cortical 

dipoles. 

(4) Misestimation of dipole orientation 

The SMV beamformer was the most sensitive to 

misestimation of dipole orientation, with a small difference 

between the estimated orientation and the actual orientation 

of the dipole considerably degrading the performance of this 

beamformer (Fig. 4). 

(5) Interference from another dipole source signal 

Most of the beamformers have similar behaviour when 

interfered with by another dipole source. Fig. 5 shows the 

behaviour of the beamformers for an interfering dipole. 

(6) Additive background signal 

The AGCMN beamformer performed well when white 

noise was applied; but, when real EEG was used as additive  

Fig. 1. The effect of dipole depth inside the brain on the 

performance of the beamformers for a dipole with 

orientation [1 0 0] while dipole magnitude and orientation 

are fixed,  �
�
�=0.33.  

Fig. 2. The effect of varying the magnitude of the dipole on 

the performance of beamformers for a dipole located at [22, 
38, 0](mm) and orientation [-0.5, 0.6, 0.6]. 

background, this beamformer performed poorly. The ESMV 

beamformer also had a better performance when white 

additive background signal was used than when real EEG 

was used.  

The two main differences between white noise and real 

EEG are: (1) in white noise all the frequency components 

have similar power opposed to real EEG and, (2) there is no 

correlation between channels for white noise while in real 

EEG there is some correlation between signals of different 

channels (spatially non-white). It is also shown in [16] that 

real EEG as additive background signal introduces a 
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Fig. 3. The effect of misestimation of dipole position on the 

performance of beamformers for a dipole located at [24, 42, 

0](mm), orientation [0.33 0.66 0.66], fixed magnitude, 

�����= 0.37. In the first sample point, the location given to 
the beamformer is exactly the location of the dipole source 

signal, �� � �	, while for other sample points the location 
given to the beamformer becomes farther and farther from the dipole source 

signal. 

Fig. 4. The effect of misestimation of dipole orientation on 

the performance of beamformers for a dipole located at [25, 

-54, 26](mm) orientation [0, 0.7, 0.7] and fixed magnitudes, 

�����=0.2. For each sample, the estimated dipole 
orientation given to the beamformer is different, to some 

extent, in the first sample point 
� � 
	 and for the rest of 

the sample points ���, ��� changed while ��� � 0. The last sample point 


� � �0,�0.7,�0.7� corresponds to 180 deg misestimation of dipole 
orientation. 

spatially non-uniform component to the neural power map 

that depends on the measurement site. Also, by applying 

EEG of different subjects as additive background, we found 

that SMV and WNMV are less robust to changes in the 

background EEG. 

Fig. 5. The ��� for a moving interfering dipole with a fixed 
orientation [0, 0.83, 0.51] and magnitude in all locations 

while the dipole of interest had a fixed location of [28, -20, 

34] (mm), magnitude, and orientation [-0.33, 0.67, 0.67]. 

�����=0.8. 

V. DISCUSSION

(1) Minimum variance (MV) 

The MV beamformer proved to be reliable throughout 

this study as its performance was less sensitive to changes in 

the different parameters. The MV beamformer also has the 

simplest formulation for weight calculation and needs less 

computational effort than the other beamformers. 

(2) Borgiotti-Kaplan (BK) 

The BK was found to perform very similarly to the 

MV beamformer in our study.  

(3) Generalized side lobe canceller form of minimum 

variance (GSC) 

The GSC performed poorly compared to most other 

beamformers. The only situation in which it performed 

acceptably was when ����� was low. As the magnitude of 

the dipole increases the ������ of this beamformer 

dropped dramatically. The reason for this drop is that this 

beamformer has two channels, one a fixed (quiescent) 

beamformer and the other a blocking channel which 

includes a blocking matrix and an adaptive filter which has a 

feedback loop. Some of the reconstructed signal �̂��� is fed 

to the blocking matrix through this feedback loop and is 

subtracted from the scalar beamformer output which 

degrades the ������. Computational effort needed due to 

adaptive updates for each time sample is another 

disadvantage of GSC.   

(4) Eigenspace extension of minimum variance (ESMV) 

The ESMV is an effective beamformer when the 

����� is high but otherwise performs only slightly better or 

the same as the MV beamformer (Fig. 2). The reason is that 

when the ����� is high the signal space is small and noise 

space is large, by removing the noise space by means of 

eigenvalue decomposition of the covariance matrix a 

substantial amount of noise disappears from the beamformer 

output and the ������ increases. However, when the 

����� is low, the noise space is small and, as a result, 

removing the noise space makes little change to ������. In 

[1], where the eigenspace extension of the vector BK 

beamformer was proposed and compared with the vector 

MV beamformer, it is mentioned that for the simulations, 

high ����� values were applied which means the result of 

the comparison could be different if ����� was lower. The 

ESMV beamformer also had a better performance when 

white noise was used as the additive background signal 
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rather than real EEG. Although the solution proposed in [17] 

is a form of prewhitened extension of the ESMV 

beamformer for non-white noise, the covariance matrix for 

the prestimuli signals needed to be defined separately. 

Consequently, the ESMV beamformer has been found to be 

more useful for evoked potentials [18]. 

Furthermore, a serious deficiency of the ESMV 

beamformer is that it needs user information to determine 

the size of the signal and noise spaces, which cannot be 

automated. 

The ESMV beamformer exhibited marginally better 

performance than the other beamformers in reconstruction 

of more cortical source signals (Fig. 1) as cortical source 

signals are spatially more separable than deep EEG sources 

[17].  

(5) Weight normalized minimum variance (WNMV)  

The WNMV beamformer was found to be overly 

sensitive to the EEG background signal. In addition, 

Greenblatt et al. [3] reported that the WNMV beamformer is 

sensitive to dipole magnitude.  

(6) Standardized minimum variance (SMV) 

The SMV beamformer was found to have a similar 

performance to WNMV. The SMV was also very sensitive 

to misestimation of the dipole orientation, Fig. 4. 

(7) Array-gain constraint minimum norm spatial filter with 

recursively updated Gram matrix (AGCMN) 

The AGCMN beamformer has been recently 

introduced [4] and works well when white noise is used as 

additive background signal. However, when real EEG is 

used it performs very poorly, except for high ����� (e.g., 

����� � 16 in [4]). Thus, this beamformer is well-suited to 

study neural responses to evoked stimulation, but not for 

studying brain activities that are not time-locked to stimuli 

[19]. The plots of ���	
� and �� in Fig. 2 show that the 

AGCMN beamformer performs better than the MV 

beamformer only when the ����� 
 25. Another big 

disadvantage is the huge computational effort needed as the 

weights have to be updated for each time sample. 

(8) Higher-order covariance extension of MV (HOC)  

The HOC was unable to reconstruct the dipole time 

course under any condition (and, hence, was omitted in Figs 

1-5). In fact, there was no example in the original paper [2] 

of time course reconstruction by this beamformer, as it was 

only compared to other beamformers in terms of neural 

activity index.  

VI. CONCLUSION

Although the ESVM beamformer can perform slightly 

better than other beamformers for small dipoles, and even 

more so for large dipoles, it is not a contender for real-time 

beamforming of EEG as it cannot be completely automated. 

Overall, in terms of performance, robustness to variations in 

 parameters, and ease of application, MV and BK 

beamformers are the best performers.  
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