
The Unlock Project: A Python-based framework for practical

brain-computer interface communication “app” development

Jonathan S. Brumberg, Sean D. Lorenz, Byron V. Galbraith and Frank H. Guenther

Abstract—In this paper we present a framework for re-
ducing the development time needed for creating applications
for use in non-invasive brain-computer interfaces (BCI). Our
framework is primarily focused on facilitating rapid software
“app” development akin to current efforts in consumer portable
computing (e.g. smart phones and tablets). This is accomplished
by handling intermodule communication without direct user or
developer implementation, instead relying on a core subsystem
for communication of standard, internal data formats. We also
provide a library of hardware interfaces for common mobile
EEG platforms for immediate use in BCI applications. A use-
case example is described in which a user with amyotrophic
lateral sclerosis participated in an electroencephalography-
based BCI protocol developed using the proposed framework.
We show that our software environment is capable of running
in real-time with updates occurring 50-60 times per second
with limited computational overhead (5 ms system lag) while
providing accurate data acquisition and signal analysis.

I. INTRODUCTION

Brain-computer interfaces (BCI) for communication and

environmental interaction are entering a critical period in

translation from research to practice. For years, researchers

have shown how both invasive and non-invasive techniques

for actuating external devices using brain activity is feasible,

reliable and general enough for a range of potential users.

However, the primary source of software development for

BCI applications has been limited to a small minority directly

involved in BCI research. We recognize this bottleneck as

a critical impediment to BCI development and eventual

widespread use. In an effort to alleviate this bottleneck, we

propose a software development framework based upon a

standardized application programming interface (API) de-

signed to facilitate rapid “app” development. In particular,

we focus on: 1) generalized data acquisition, 2) stimulus

presentation (if applicable) and 3) user feedback (with most

emphasis on # 3).

The need for a common standard in BCI development

was first met by BCI2000, a well known BCI development

environment [1] written and maintained by researchers at

the Wadsworth Center (Albany, NY). The system employs

*This work was supported in part by CELEST, a National Science Foun-
dation Science of Learning Center (NSF OMA-0835976) and the National
Institute on Deafness and Other Communication Disorders (NIDCD R03-
DC011304)

J. S. Brumberg is with Department of Speech-Language-Hearing, Uni-
versity of Kansas, Lawrence, KS and the Department of Speech, Language
and Hearing Sciences, Boston University, Boston, MA

S. D. Lorenz and B. V. Galbraith are with the Program in Cognitive and
Neural Systems, Boston University, Boston, MA

F. H. Guenther is with the Graduate Program in Neuroscience and
Department of Speech, Language and Hearing Sciences, Boston University,
Boston, MA

a modular software development approach in which BCI

developers can specify source (e.g. data acquisition), signal

processing, user application and operator modules (e.g. in-

termodule communication). BCI2000 is implemented in the

C/C++ programming language and distributed as an open-

source software package with a C/C++ application program-

ming interface (API). Open-source developmental packages,

such as this, benefit from the fact that many users have access

to software source code and documentation. Such widespread

availability facilitates cooperation and collaboration between

distant research groups ultimately leading to a robust product.

Likening a BCI device to something as complex as a smart

phone or tablet makes clear that current BCI frameworks

behave more like complete operating systems, requiring

considerable expertise to develop. Following this analogy,

the vast thousands of smart phone and tablet “apps” have

proliferated precisely because manufacturers made simple,

compact API available to develop software in isolation from

the complexities of modern computational devices. Authors

of apps now range from the highly experienced, who are ca-

pable of writing operating system-level programs (cf. current

BCI developers), to the newly interested, who have a limited

understanding of only the available programming interface.

The framework described here borrows the themes of com-

puting standards and open development from prior efforts,

including BCI2000, but is aimed at shifting the development

focus away from academic research laboratories toward a

larger, more casual developer base. It is hard to ignore the

power of facilitating a crowd-sourcing paradigm in which

developers with no previous BCI experience can contribute

to a BCI development effort.

II. PROPOSED FRAMEWORK IMPLEMENTATION

The proposed framework is divided currently into two

modules:

• Core backend: for handling data acquisition, system

initialization and intermodule communication

• Developer “app” API: for providing a controlled en-

vironment in which developers of all backgrounds can

contribute to BCI research and products.

A. Core backend

A key framework design feature is the separation of

backend processing from the main app development space.

Backend processes are implemented and obscured from

downstream processing and provide functionality for coordi-

nating the activities of data acquisition systems, intermodule

communication and initialization of feedback streams (e.g.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

2505978-1-4577-1787-1/12/$26.00 ©2012 IEEE

graphical displays, sound buffers or haptic devices). We

have focused the current version implementation on a BCI

protocol involving display of flickering visual stimuli for

eliciting a steady state visual evoked response (SSVEP),

visual feedback of BCI performance and interfacing with

commercially available mobile EEG systems. We chose an

initial SSVEP-based BCI application to test our development

framework since the computational demands this type of

BCI are representative of the complexities observed in other

control protocols (e.g. motor imagery, auditory evoked po-

tentials or slow cortical potentials). The proposed framework

is independent from choice of elicited EEG potentials and

related eliciting stimuli (if applicable, cf. motor imagery).

Fig. 1. A system diagram of the framework processing modules. Arrows
indicate lines of communication between processing modules, handled in
the background by a master controller. The effort here has been to isolate,
as much as possible, the app environment from the remaining modules.
This isolation is key for invoking a “crowd-sourcing” paradigm for BCI
application development.

1) SSVEP: In electroencephalography (EEG), the SSVEP

is an oscillating scalp potential observed over visual cor-

tex regions that are evoked from a visual strobe stimulus.

Specifically, when presented for a sufficient amount of time,

the occipital electrode EEG response entrains to the strobe

frequency and can be identified by the presence of the

stimulus frequency and multiple harmonics in a spectral

analysis. In BCI applications, an SSVEP stimulus is often

associated with items for use in discrete choice selection.

For example, a group of four visually presented items can be

associated with four different SSVEP stimuli with different

properties, often different strobe frequencies [2] or phase

delays [3], [4]. Attending to one stimulus or another will

elicit an SSVEP with response properties associated with

the attended stimulus [5]; allowing for identification of the

attended stimulus and item through classification methods.

In this way many stimulus-item pairs can be associated and

employed in a BCI design (e.g. 13-64 stimulus-item pairs)

[6], [7].

2) Paradigm interface: In the proposed framework, all

handling of graphical objects, including initialization and

draw scheduling, are handled by a set of core routines that are

unseen by application developers (see Fig. 1). Each SSVEP

stimulus-item pair is associated with an identifier used in

the brain-activity classifier for control of the BCI device.

For instance, in an SSVEP paradigm with 4 stimulus-item

pairs, each can be labeled with the ordinal numbers 1–4.

The brain activity classifier, or decoder, works in parallel

to the display and feedback mechanisms, but outputs the

same ordinal number set for selection of application spe-

cific choices. In a motor-imagery system, the system can

be designed to associate different classes of imagery with

known stimulus-item identifiers (in this case stimuli are self-

generated modulations to the sensorimotor rhythm) for brain-

based control. A putative visual display in this case would

allocate the entire screen for application visual feedback.

A further modification, in the case of auditory feedback

devices, would deallocate all visual displays, and instead

manage the onboard sound card buffers for acoustic output.

Fig. 2. Examples of graphical layouts that can be implemented using
the proposed framework. (Top) A general description of visual layouts. A
section of the screen (e.g. the border in this example) is reserved for stimuli
and the remaining area is partitioned for multiple apps, or displays. (Bottom)
Example layouts employed in existing framework applications: (left) Screen-
border SSVEP layout with four different stimuli and a single application
space; (right) Split-screen SSVEP layout, again with four stimuli and a
half-screen application space.

3) Backend functionality: Three major underlying func-

tions that require more sophisticated programming expe-

rience not intended for crowd-sourcing development are

implemented in the proposed framework. These functions

include:

• System timing – for synchronization of inputs, pre-

sentation of all stimuli for evoked brain response (if

applicable, cf. motor-imagery) and scheduling feedback.

• Inter-module communication – for receiving and

transmitting acquired signals, decoded responses and

feedback signals.

• App switching – permits rapid switching to apps for

performing different functions (e.g. communication, en-

vironmental control or web browsing) without closing

and opening new programs.

We also include a simulation package for emulating the

response of a decoding algorithm, highlighting the separation

2506

of neurological data acquisition from the app development

process. The simulator replaces all of the modules on the left

side of Figure 1.

4) EEG acquisition: Included in the proposed framework

are a description and sample implementations of standard

interface methods for EEG acquisition systems. In general,

these methods include: 1) open a port to the device, 2)

connect, 3) start acquisition and 4) read data. We have

pre-implemented Python wrapping classes based on this

functionality for the following mobile acquisition systems:

1) g.tec g.MOBILab+

2) Emotiv Epoc

3) Neurosky Mindband

4) Custom serial port / bluetooth communication (e.g.

Arduino communication)

The Emotiv Epoc, Neurosky Mindband and Arduino-coupled

electrophysiology acquisition systems are relatively afford-

able for individual hobbyists and start-up device manufac-

turers alike. This framework, with pre-implemented hard-

ware interfaces and standard hardware API, will facilitate

development of BCI applications by reducing the knowledge

overhead needed to interface with these complex devices in

real-time.

B. Developer “app” API

The developer app API is the primary coding entrance

point for the intended audience of casual BCI app developers.

We have devised a simplified and concise programming

standard consisting of just two required methods:

1) draw()

2) update(choice, select)

Both methods are scheduled by the backend paradigm con-

troller (see Fig. 1) and called once per update cycle. They are

handled in a separate process from data acquisition and brain

response classification in which the update cycle runs as fast

as possible, but is often constrained by the display frame

refresh rate (e.g. 60 Hz or 75 Hz for most LCD monitors).

Details for these two requisite methods are given as Python-

code descriptions in Figure 3.

def draw():

Place all drawing or multimodal output

commands here

def update(choice = None, select = False):

Updates all methods based on current

decoding choice

#

\textbf{choice}: a scalar value part of an

enumerated type known to both

decoders and feedback methods

#

\textbf{select}: a boolean value indicating

whether to "select" or

act upon the [choice] value

Fig. 3. Code description for draw() and update() methods required for all
app implementations. The update function assumes no choices have been
made, and, therefore, should not process any selections.

III. PROTOTYPE TRIAL

We have completed the initial stage of prototype testing

with a subject (45 yo, male) having amyotrophic lateral scle-

rosis (ALS). All methods were approved by the Boston Uni-

versity Institutional Review Board and informed consent was

obtained by the participant and his legal guardian prior to the

experimental session. Three four-choice SSVEP applications

were developed using the proposed framework and executed

on a Lenovo x220 laptop with 4 GB onboard memory and an

Intel 64-bit Core i5 processor running Ubuntu 11.10 Linux.

The goal of this trial was to: 1) ensure the system was capable

of running in real time with negligible system lag, and 2)

verify proper stimulus presentation, signal acquisition and

signal analysis for use in BCI applications.

A. Overall system performance

The system is designed to run with processing times (or

system delays) below the effective sampling rate of stimulus

presentation and feedback. Figure 4 shows the overall system

delay for a segment of application running time as a time-

series representation of system delay labeled according to

application “mode.” In this example, the application started

in an initial app menu state then switched into our speech-

output application which has multiple levels of functioning

(initial level 1, middle section of Fig. 4; and a more specific

level 2, right section of Fig. 4. These data illustrate the

application incurs < 5 ms average system delay which is less

than the overall processing interval, though certain functions

require more processing than others.

Fig. 4. Overall system lag for an example implementation employing the
proposed framework displayed as system delay evolution over time. In this
example, the BCI application entered a toplevel main menu, then entered
a hierarchical speech output system with two layers. Each app (i.e. main
menu, or speech output) utilized different levels of resources, though overall
system delay averaged less than 5 ms.

B. User trial

Here we report on the verification of proper stimulus

presentation combined with signals acquisition through a

proxy of spectral analysis. This analysis is based on a pre-

trial calibration period, in which the subject was instructed

to attend to one of four SSVEP stimuli placed around the

border of the laptop screen (see Fig. 2, bottom left). Each

stimulus was flashing at a different rate (12 Hz, 13 Hz, 14 Hz

2507

and 15 Hz, respectively). Figure 5 shows the average power

spectral density (PSD) across all trials for each stimulus

attention condition. According to the properties of SSVEP,

we expect increased PSD amplitude for the specified strobe

frequencies during appropriate task conditions. This result is

confirmed in Figure 5 where local peaks in PSD amplitude

are observed for the 12 Hz (blue), 13 Hz (green), 14 Hz

(red) and 15 Hz (purple) conditions. From these results, we

can infer the system is operating within acceptable tolerances

and is capable of eliciting and recording valid neurological

data.

Fig. 5. Sample power spectrum during 4-choice SSVEP task.

IV. NEXT STEPS

A. Iterative adjustments based on user feedback

Our experience evaluating this framework as a practical

BCI system for users with movement and speech impair-

ments has lead to new design considerations and constraints.

Two major requested features are:

1) Real-time feedback of BCI activity between selections

(e.g. more salient visual representations of current

decision)

2) More flexible selection methods (e.g. recorded avail-

able EMG activity, single vs. multiple eye blinks)

Refinements such as these highlight the importance of

including potential users with impairments in the design

process, and a flexible software architecture to accommodate

changing device specifications.

B. Tablet implementation

A pure Python implementation was chosen for the pro-

posed framework given recent developments in native Python

scripting on Android devices. A number of Python envi-

ronments now exist for use in the Android OS including

both standard Python computing and graphical user interface

development. Our framework has been designed from the

start with these in mind, with an eye toward near-future im-

plementations on commercial mobile computing platforms.

C. Context-aware adaptation

We propose a robust, mobile platform capable of inte-

grating multiple environmental signals into a context-aware

communication system. Examples of this type of compu-

tational approach have been explored previously for non-

communication BCI systems (e.g. wheel chair navigation [8])

and non-BCI augmentative and alternative communication

(e.g. iconCHAT [9]), but have not yet been integrated for

a BCI communication device. Further, these two examples

include just one additional context feature each, as does

the more traditional context-aware methods of word and

language prediction. To expand the environmental feature set,

we include:

• GPS for access to location-specific commands

• Calendar for event- and time-specific inputs

• Audio for Google speech-to-text input

• Bluetooth for receiving EEG/EOG BCI-specific selec-

tion commands

• Video for object / face recognition from built-in cameras

We plan to use these features in future implementations

of the proposed framework, providing an adaptive user

interface capable of presenting subjects with the most likely

conversation options in a given contextual situation. This

system should be definable at multiple levels of conversa-

tion including phrase selection and word/letter spelling with

conversation-, language- and word-level prediction. The goal

is to reduce the number of selections necessary for user

conversation and improve on effective information transfer

rate through computational assistance.

REFERENCES

[1] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R.
Wolpaw, “BCI2000: a general-purpose brain-computer interface (BCI)
system,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6,
pp. 1034–1043, 2004.

[2] S. Parini, L. Maggi, A. C. Turconi, and G. Andreoni, “A robust and self-
paced BCI system based on a four class SSVEP paradigm: algorithms
and protocols for a high-transfer-rate direct brain communication.”
Computational Intelligence and Neuroscience, p. 864564, 2009.

[3] E. Gysels and P. Celka, “Phase synchronization for the recognition
of mental tasks in a brain-computer interface.” IEEE Transactions on

Neural Systems and Rehabilitation Engineering, vol. 12, no. 4, pp. 406–
415, 2004.

[4] G. Bin, X. Gao, Y. Wang, Y. Li, B. Hong, and S. Gao, “A high-speed
BCI based on code modulation VEP.” Journal of Neural Engineering,
vol. 8, no. 2, p. 025015, 2011.

[5] S. T. Morgan, J. C. Hansen, and S. A. Hillyard, “Selective attention to
stimulus location modulates the steady-state visual evoked potential.”
Proceedings of the National Academy of Sciences of the United States

of America, vol. 93, no. 10, pp. 4770–4774, 1996.
[6] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of

a brain-computer interface with high transfer rates,” IEEE Transactions

on Biomedical Engineering, vol. 49, no. 10, pp. 1181–1186, Oct. 2002.
[7] E. E. Sutter, “The brain response interface: communication through

visually-induced electrical brain responses,” Journal of Microcomputer

Applications, vol. 15, no. 1, pp. 31–45, Jan. 1992.
[8] G. Vanacker, J. del R Millán, E. Lew, P. W. Ferrez, F. G. Moles,

J. Philips, H. Van Brussel, and M. Nuttin, “Context-based filtering for
assisted brain-actuated wheelchair driving.” Computational intelligence
and neuroscience, vol. 2007, p. 25130, Jan. 2007.

[9] R. Patel and R. Radhakrishnan, “Enhancing access to situational vocab-
ulary by leveraging geographic context,” Assistive Technology Outcomes
and Benefits, vol. 4, no. 1, pp. 99—-114, 2007.

2508

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

