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Fig. 1. Block diagram highlighting the main contributions of the
paper.

Abstract— A novel experimental setup using accelerom-
eter and gyroscope sensors embedded on a single board
along with a distance-based pattern recognition algorithm
is presented for accurately identifying basic movements for
possible application in gaming using a mobile platform.
As an example, we considered some basic step sequences
in the popular dance game (e.g., dance dance revolution),
and could detect these movements with a reasonably high
probability. We envision that the experimental results
presented in this paper will motivate future research in
the world of mobile gaming applications using advanced
smart phones with a dual module design.

I. INTRODUCTION: EVOLUTION OF MOBILE GAMING

Mobile games are applications that simply use the
device platform to run the game software. These games
maybe downloaded on the fly and installed while mobile,
or onto the handset using a cable, or come pre-installed
by the original equipment manufacturer (OEM) or by
the cellular operator as applications or services. More
than 10 million people worldwide play games on mobile
phones and handheld devices [1], and the world-wide
mobile gaming revenue is expected to reach $11.4 billion
by 2014. These are very important motivations for game
developers and designers to create blockbuster games for
mobile platforms.

*This work was done at DOCOMO USA Labs (now, DOCOMO
Innovations).
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The contributions of the paper can be summarized as
follows:

1) Experimental Setup: A novel experimental setup
using accelerometer and gyroscope sensors em-
bedded on a single board (Block 2 in Fig. 1);

2) Data analysis and Feature Extraction: Our feature
extraction using wavelet packet decomposition
(WPD), thereby providing better resolution for
analysis than the fast Fourier transform (FFT)
(Block 3c in Fig. 1);

3) Algorithm Development: Pattern recognition-
based algorithm based on the Mahalanobis dis-
tance, which is based on the correlations between
the data points (Block 4a in Fig. 1);

4) Pose Recognition: Reliable pose recognition using
two sensor boards (i.e., accelerometer and gyro
combination) for games with a lot of human
movements (e.g., dance dance revolution (DDR),
a very popular game), is demonstrated with a
high probability of success (Block 4 in Fig. 1)
to motivate future research game changing phones
with a dual module design such as the Fujitsu F-
04B.

The rest of the paper is organized as follows. Section
II briefly mentions relevant prior works. Section III
outlines the methodology and experiments conducted.
Experimental results are discussed in Section IV and
conclusions are presented in Section V.

II. PRIOR WORKS

Combinations of accelerometers and gyroscope sen-
sors have been used to (1) estimate human body orienta-
tion [2]; (2) detect human posture and walking speed [3],
and (3) human recognition via gait recognition [4], to
name a few. However, none of these implementations are
for a portable device such as a mobile phone. There has
been some work on developing systems that distinguish
between activity and rest, measured the tilt angle of the
body, and could detect walking and falling conditions,
gait analysis, and other posture recognition algorithms
for a mobile platform [5]–[7]. However, to the best of
our knowledge, there have been no works that consider
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Fig. 2. The integrated sensor board mobile platform.

a combination of accelerometer and gyroscopes on a
mobile device. To the best of our knowledge, there
has been only one work that deploys accelerometers
for video games such as the dance dance revolution
(DDR). Crampton et al., created and tested a wearable
sensor network that detects the subjects body position
as input for the video games [8]. The effects of multiple
accelerometers on accurate pose detection support the
use of accelerometer-based sensor networks as input in
video games. This paper is different because, a combi-
nation of accelerometer and gyro sensors embedded on
a portable dual mode mobile platform is considered for
pose recognition resulting motivating future research in
mobile gaming. Moreover, reasonable pose recognition
is demonstrated using fewer sensors and our classifica-
tion algorithm.

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Accelerometer-Gyro Board (Experimental Device)

The device we used for collecting data is shown
in Fig. 2. The device integrates an IHU-500 board
from InvenSense 1, an SD card with 2 GB capacity,
and a USB port. The IHU-500 board is equipped with
an integrated triaxis accelerometer (IME-3000), a two-
dimension gyroscope (IDG-500), and a one-dimension
gyroscope (ISZ-500). Therefore, the device can capture
acceleration and rotation in three dimensions. In the
futureThe sampling rate is set to be 500 Hz. Up to 8-
hour sampling data with 16 bits/sample/dimension can
be collected and stored in the in the 2 GB SD card. Up
to 60 data sets could be recorded after which the data
must be uploaded to a PC. Combined duration of the 60
datasets did not exceed eight hours of data recordings.

B. Pose Recognition Experiments

Three different experiments were conducted for pose
recognition by using the DDR as an example, which
depends on the placement of the accelerometer gyro on
the body. It is vital to get the position and rotation
of the “points of motion” to infer about the DDR
step. In Experiment 1, every DDR song sequence can

1http://www.invensense.com/

be thought of as a combination of distinct sequences,
each being a combination of forward, backward, right,
and left movements. With this in mind, 48 poses were
executed, each pose being a permutation of the four
distinct movements without any repetition. A total of
100 readings are taken each time with a one-two second
period between each movement. For this experiment,
one sensor board was strapped tightly to the ankle, while
the other was strapped around the torso (or the waist). In
Experiment 2, one sensor board was strapped tightly to
the ankle, while the other was positioned on the palm. A
total of five poses were executed, and they were right,
forward, backward, forward-backward, and backward-
forward. The objective of this experiment was to distin-
guish the short movements or pose changes. Finally, in
Experiment 3, one sensor board was strapped tightly to
the ankle, while the other was strapped around the torso
(or the waist). A total of five poses were executed, and
they were right, forward, backward, forward-backward,
and backward-forward. The objective here also was to
distinguish the short movements or pose changes.

C. Training Phase

The purpose of the training phase is to create a raw
data set of a given number of poses for an individual.
In order to record a pose, after sufficient practice,
the subject performs each pose 50 times. A reading
consisted of the x, y, and z accelerations, and the pitch,
roll, and yaw from the gyroscope from both the sensor
boards. A data set for training comprised raw data from
a single subject. In order to convert a set of raw data
into recognizable pose pattern, two basic calculations
must be performed. The mean acceleration for each pose
must be computed. The acceleration values and standard
deviations for each axis of the accelerometer for each
pose are stored in a pose bank for subsequent tasks.
This is repeated for every subject. The training phase and
developing a customized pose dictionary are essential for
pose classification. A high-level flowchart illustration the
use of training data to generate a generic pose dictionary
for the application is shown in Fig. 3.

D. Feature Extraction Phase

The proposed feature extraction framework has the
three key steps. Segmentation is used mainly to auto-
matically determine the beginning and end of the pose.
Based on the experiments and observation of the data
from the accelerometers, a pose is defined as follows.
A pose begins with a fast acceleration, a continuous
change in the direction throughout the duration of the
pose, and it ends with a stop of the movement. One
approach is to do this manually, i.e., every new set
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Fig. 3. High-level flowchart of the classification algorithm.

of data is preceded and followed by a sudden jerk.
With sufficient data points, an empirical approach was
to check the magnitude of the parameter, D, defined as
D =

√
(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2,

where xk, yk, and zk are the values of the accelerometer
at instant k. If D > 2.8, the segmentation begins,
and stops when D < 1.2, indicative of a pose ending.
Filtering is used in order to eliminate some parts of the
data stream that do not contribute to the gesture. This
work uses two low pass filters to reduce noise effects in
data sets, and used the Bayesian decision rule to set
the thresholds. If D < 1.4, the data is not included
in the pose data stream. Again, cross validation was
used to verify these empirical result based on the data
points obtained from a single subject. The Classifier is
used in order to identify the input gestures according to
the database. Acceleration and gyroscopic measurements
from the sensor boards are read in every time a pose is
executed and compared to the pose signatures obtained
from the training phase. Every pose is characterized by
the mean and standard deviations of the components
of its training feature vectors. The distance between
an unknown sample M (input) and the mean of the
features of class m (trained pose signature out of a
total of L), d(M,m), is then computed. The unknown
input is then assigned to a class m∗ (or move m∗) for
which the distance, d(M,m) is the minimum. Mathe-
matically, m∗ = min{d(M,m)}, i = 1, 2, . . . , L. The
distance, d(M,m) is the Mahalanobis distance metric,
and is based on correlations between variables by which
different patterns can be identified and analyzed. When
the correlation between the patterns decreases, then the
Mahalanobis distance metric reduces to the more widely
used Euclidean distance metric. If the distance falls
within an acceptable threshold, the pose is declared as
being detected. A high-level flowchart of this classifier
is summarized in Fig. 3.

(a) Experiment 1. (b) Experiment 2.

(c) Experiment 3.

Fig. 4. Standard deviations in the measurements of the motion sensors
over multiple trials for a single user.

IV. EXPERIMENTAL RESULTS

A series of experiments were performed to examine
the capabilities and limitations of the two-sensor-based
pose detection architectures in the mobile gaming con-
text. The subjects executed a sequence of typical DDR
steps multiple times consisting of 24 distinct poses for
Experiment 1, and five distinct poses for Experiments 2
and 3. Tests were conducted under supervision with a
consistent level of instruction and coaching given by a
DDR professional.

A. Placement of Sensors

Figs. 4(a)–4(c) show the standard deviations in the
measurements in the accelerometer and gyro (all six
dimensions) at the different locations during each exper-
iment (multiple trials). The larger the standard deviation
in the measurements, the higher is the probability for
successful pose recognition. In other words, very minus-
cule standard deviation in measurements is indicative of
a poor choice in the location of the sensor board on
the human body. From Fig. 4(b), because the standard
deviation in the accelerometer and gyro measurements is
very low, it implies that placing the sensor board on the
palm is ineffective for pose recognition. In other words,
the set up in Experiment 2 reduces to just a single sensor
board (on the ankle) as the one on the palm is redundant.
Hence, due to space constraints, we will only present
results from Experiments 1 and 3.

B. Pose Difficulty

During the “learning” phase, it was noted that certain
poses were consistently problematic. Training data from
a single individual was tested over 20 trials using a
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low recognition threshold determined by continually
increasing the allowable recognition threshold in order
to determine the level of difficulty among the different
poses for the experiments. However, with sufficient
training and practice, the recognition rates can be en-
hanced. Although it is desirable for the population to
be capable of performing every pose, a difference in
complexity among the poses can prove to be beneficial
in some aspects of game development, allowing for an
added level of difficulty in the game. The results from
the experiments suggest a need for a larger training data
set for the poses in order to accommodate a wider variety
of body types and physical limitations in addition to
expertise levels. This should not be surprising, because
it shows that a large training sample is not necessarily
required to create games that are playable by a range of
people.

C. Threshold

It is unreasonable to expect a user to be able to
achieve a “perfect” pose, in other words achieve a
recognition distance of zero, even if they are a part of
the training sample. Simple variations are inevitable due
to the core mechanics of the human musculature system.
Therefore, an allowable range, defined by a threshold, is
experimentally determined to allow reasonably similar
poses to be detected while avoiding false alarms. The
threshold for an individuals data set was determined
by continually increasing the allowable Mahalanobis
distance after each trial until the lowest possible value
is reached where all user poses could be recognized. It
should be noted that the threshold for one individual
data set will not necessarily be the same as anothers
since their standard deviations will vary based on how
they perform the pose in the training phase and how
steady they are during recording. From Figs. 5(a) and
5(b), it can be observed that thresholds of 17.8 and 21.2
are acceptable because they achieve a pose recognition
rate of close to 98% and 80% for Experiments 1 and 3,
respectively. Once an acceptable threshold was found, a
confusion matrix was created to determine the likelihood
of false positives among other poses. The results indicate
little possibility for the occurrence of false positives.

V. CONCLUSIONS

In this work, it has been shown that using a com-
bination of six sensors (three accelerometers and three
gyros), one can detect and discern human dance move-
ments pertaining to a DDR-like game with a reasonably
high probability. These initial results obtained using two
sensor boards with the form factor of mobile phones, but
without the processor serves as a motivation for future

(a) Experiment 1. (b) Experiment 3.

Fig. 5. Success rates and thresholds for a single user.

research in mobile gaming using dual mode design
phones. We have created a relatively inexpensive way
of accurately identifying specific poses for gaming on a
mobile platform. Though a new user may not achieve
100% pose recognition, it has been shown that with
sufficient practice, improvement will be seen. The effect
is desirable in game development to help maintain user
interest over time. Although this new and original human
pose recognition technology was tested for DDR, the
same technology may be used to help the elderly stay
at home. This technology can be applied to track and
monitor the movements of elderly people to guarantee
they are getting up, to detect falls, or to monitor electric
wheel chairs so that they may go outside alone thereby
assisting the elderly while they live independently in
their own homes where they feel safe.
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