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Abstract—In this work we present a newly developed ear-
worn sensing and annotation device to unobtrusively capture
head movements in real life situations. It has been designed in
the context of developing multimodal hearing instruments (HIs),
but is not limited to this application domain. The ear-worn
device captures triaxial acceleration, rate of turn and magnetic
field and features a one-button-approach for real-time data an-
notation through the user. The system runtime is over 5 hours at
a sampling rate of 128 Hz. In a user study with 21 participants
the device was perceived as comfortable and showed a robust
hold at the ear. On the example of head acceleration data
we perform unsupervised clustering to demonstrate the benefit
of head movements for multimodal HIs. We believe the novel
technology will help to push the boundaries of HI technology.

[. INTRODUCTION

A major trend in hearing instrument (HI) technology is
towards multimodal sensing in addition to sound to improve
automatic hearing program selection [1], [2]. In this context
the challenge arises to collect and annotate multimodal
reference data to identify hearing situations to be improved
and to train the multimodal classifier running within the HI.
To address this need we developed in tight collaboration with
a HI manufacturer, a HI acoustician and HI users an ear-worn
multimodal data collection and annotation device that meets
the following requirements:

o providing additional sensors to sound that are subject
to investigation for potential integration in future HIs,

o long-term deployment in real life settings to cover
situations that cannot be represented in laboratory en-
vironments,

o unobtrusiveness as the system should influence the
user’s behavior as little as possible,

e data annotation solution as annotated data is required
for applying machine learning algorithms and statistical
analyses.

We place the device at the user’s ear, because this location
is especially appealing:

o HIs are worn at the same location, thus data from our
sensors corresponds to the data from sensors that will
eventually be integrated into future HIs,

e in previous work the authors found head movements as
promising to distinguish hearing wishes [1],
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« the location behind the ear is practical known from the
widespread of use HIs

Our device integrates three MEMS sensors: a triaxial ac-
celerometer, a triaxial gyroscope, and a triaxial magnetic field
sensor. The variety of sensors allows us to determine the most
discriminant subset of sensors for a given hearing situation.
Minimizing the required subset of sensors is crucial, because
integration of hardware and algorithms into HIs imposes
strong volume and power restrictions.

A. Paper Scope and Contributions

We present a newly developed ear-worn sensing and
annotation device to unobtrusively capture head movements
in real life situations. We characterize the system from
the technical and user’s point of view. On the example of
head acceleration data we perform unsupervised clustering
to demonstrate the benefit of head movement data for mul-
timodal HIs.

B. Paper Organization

We first provide an overview of the state of the art in
related data recording and annotation devices and discuss the
limitations of current systems. We then describe and charac-
terize our proposed system. Finally, we discuss the findings
from the unsupervised clustering of head acceleration data,
conclude, and give an outlook.

II. RELATED WORK
A. Ear-Worn Data Recording Devices

In [3] the authors present an ear-worn accelerometer for
activity recognition. However, it does not offer data annota-
tion functionalities or additional sensors. In [4] the authors
present an ear-worn device for wearable photoplethysmogra-
phy. A triaxial accelerometer is used to implement motion-
adaptive noise cancellation filters for the physiological sig-
nal. Another ear-worn photoplethysmography sensor is pre-
sented in [6]. The device does not feature accelerometers but
a dedicated flexible transducer structure, which can adapt to a
variety of skin surface contours. In [5] the authors use an ear-
worn camera to detect 3D hand gestures. Feedback is given
acoustically by earphones and visually by a miniaturized
projector. Unobtrusive operation was not a design goal for
both the system interaction modalities and the housing.

To the best of our knowledge no ear-worn systems are
currently available that include a triaxial accelerometer, gy-
roscope and magnetic field sensor. Most existing devices are
too bulky to be worn unobtrusively behind the ear and do
not offer any data annotation functionality.
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The newly developed ear-worn sensing (triaxial accelerometer, gyroscope and magnetic field sensor) and annotation device: Shown are a user

wearing the device, and the device with the annotation button and the USB connector for charging the battery and downloading the recorded data.

B. Data Annotation

Designing an unobtrusive wearable data annotation sys-
tem is a well-known challenge in the wearable computing
research community. Manual offline annotation is a cum-
bersome, error prone, and extremely time consuming pro-
cess [7]. Accurate but time consuming video annotation can
be used to annotate a subset of the data set, and then machine
learning techniques are used to make a “draft annotation”
of the remainder of the dataset. This saves time for the
experimenter, as he then only needs to skim through the
draft annotations in places where there is a low confidence
in the automatic annotation. However, a video camera needs
to be used, which is more obtrusive and even problematic in
public space due to privacy issues. Semi- or unsupervised
algorithms as well as transfer learning [8] can be used
to mitigate the annotation problem. However, this way no
quantitative evaluation against a ground truth is possible.
In [9] the authors propose to tag objects with sensors to auto-
matically annotate when objects are manipulated (e.g. when
the user picks up a cup to drink). This approach is limited
to environments where all relevant objects can be tagged.

There is a need for real-time annotation solutions to reduce
annotation effort and increase annotation quality.

III. EAR-WORN SENSING AND ANNOTATION

We used 3D CAD rapid prototyping to produce the ear-
worn hardware shown in Fig. 1. Normal hearing people can
use it to collect reference data relevant for the development
of algorithms for multimodal HIs assuming that head move-
ments do not differ between normal hearing and hearing
impaired people.

A. Sensing and Data Handling

The device weighs 14.5 grams and its maximum dimen-
sions are 53 mm X 30mm x 10 mm, which is larger than
a HI but similar to a common speech processor worn
behind the ear by cochlear implant users. It is powered
by a rechargeable Lithium-Polymer battery with a ca-
pacity of 110 mAh. The integrated miniaturized ETHOS
IMU [10] comprises a low-power 16 bit dsPIC (MICROCHIP
dsPIC33FJ128) with 16 kB on-board RAM and an integrated
real time clock, a triaxial MEMS accelerometer (Linear
Technology LIS3LVO02DL) with a resolution of 16bit, a

triaxial magnetic field sensor (Honeywell HMC5843) with
a resolution of 12bit, a triaxial gyroscope (Invensense ITG-
3200) with a resolution of 16 bit, a temperature sensor for
automatic self-calibration, logic to write sensor data to a
microSD-Card, an USB interface to download data in real-
time or after the recordings, to configure the sampling rates
of the sensors and to charge the battery, and an ANT+ mod-
ule for low power wireless communication, e.g. to transmit
sensor data to a mobile phone.

The system runtime for a battery capacity of 110 mAh is
more than 16 hours for sampling 3D acceleration at a rate
of 32Hz. When all three sensors are sampled at a rate of
128 Hz the runtime is more than 5 hours.

B. Data Annotation: One-Button-Approach

We integrated a button into the device that the user can
press once or multiple times to annotate the data in real-
time (e.g. once for starting a certain activity; twice for
stopping it). An advantage of the user annotating the data
in real-time is high annotation quality compared to offline
annotation approaches, where the user needs to remember
his situation. The user interaction with the button is stored
synchronized together with the sensor data. We opted for the
one-button-approach to maintain a standalone system with
an easy to use and as unobtrusive as possible annotation
process. Alternatively, a smartphone application could be
used to annotate data from our device at a finer granularity,
but the resulting phone interaction can be considered as too
obtrusive depending on the application. Figure 2 shows head
movement data and annotation recorded with our device.

C. User Acceptance

We conducted a user study involving 21 normal hearing
participants (17 male, 4 female, age 18-60) to evaluate
the user acceptance of our system. We considered normal
hearing participants in the study, because we assume that the
acceptance is perceived similar to HI users. Normal hearing
people use the system as well to achieve the necessary
large quantity of reference data. In the first phase of the
user study, the participants were asked to wear the device
and perform everyday activities, paying special attention
to comfort and hold of the device. The activities included
walking (alone and while talking with a colleague), going up
and down stairs, jumping and shaking the head. In a second
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Fig. 2. Head movement data and data annotation by the user recorded with
the ear-worn device.

phase, the participants were asked to evaluate the device in
a questionnaire regarding its wearing comfort, noticeability,
size, hold, unobtrusiveness and ease of use. For each topic
they could choose their answers from four categories. We
found that (number of occurrences in brackets):

« wearing the device was perceived as comfortable (14)
or very comfortable (7)

o people did not find the device to be noticeable (9), or
just very slightly (6)

o the device holds tightly and does not drop; even for
strong shakes of the head, the hold was good (10) or
very good (10) and we found the device to also hold
tightly when going by bike or jogging over rough terrain

« the one-button approach for real-time data annotation
is simple to learn and use (21); people believe that
pressing the button behind the ear feels slightly eye-
catching (12) or even striking (2) when moving in public

« about half of the participants (12) suggests that, while
being already very comfortable to wear, the device may
be further improved by shrinking its dimensions.

D. Limitations

The one-button approach for data annotation is simple to
use but reaches its limits when a large amount of different
classes needs to be annotated. However, in our applications
it is sufficient, as only a small amount of classes will appear
in the data sets to be recorded. If many annotation classes are
required, the system can be used to set the class boundaries.
In a consecutive offline step the already segmented annota-
tion class instances can then be labeled manually, e.g. based
on audio, video or experiment documentation notes.

One of the user’s ears is occupied by the device, so
only one additional regular HI can be worn. If two HIs are

required for a given application, e.g., to record stereo sound,
our system needs to be merged with the HI into a single
device or in-the-ear HIs need to be used.

IV. UNSUPERVISED CLUSTERING OF
HEAD MOVEMENT DATA

A. Data Set

We designed an experiment to investigate how movements
of the HI user’s head can characterize activities of daily
living (ADL) that are relevant for the user’s current hearing
wish. The proof-of-concept experiment involved a single user
with no hearing impairment and was tailored specifically to
cover a wide range of ADL of elderly people since they form
the largest group of HI users [11]. Over one hour of data has
been recorded in real-life settings like restaurants, crowded
pedestrian areas and tourist sites. Safety-critical situations
when moving in the city traffic as well as rides by train and
tram were included as well.

B. Method to Identify Clusters in Head Movement Data

In the analysis of the recorded data we focus on the head
acceleration data (sampled at 128 Hz), because we found
promising results with this kind of data with a wired system
during a study in an office scenario [1].

Using a sliding window of 100 samples with a step size of
50 samples we calculated a set of 13 features from the head
movement acceleration data comprising the mean, variance,
mean crossing and zero crossing rate of the acceleration in
X, y and z-direction, and the triaxial magnitude. We then
applied Principal Component Analysis (PCA) [12] to the
calculated features. PCA is a method to transform a high
dimensional feature space into a lower-dimensional feature
space to reveal structures contained in the higher-dimensional
set. PCA identifies the transformed axis directions, called
principal components (PCs), by means of singular value
decompositions and ranks them according to the data’s
variances along their directions. Components that vary little
in the transformed feature space (small singular values) are
neglected to reduce the dimensionality, assuming that they
do not add significant information to the PCs.

We plot the transformed feature space in a 3D coordinate
system obtained by the three PCs with the highest singular
values and color them according to their data annotation to
identify clusters.

C. Results and Discussion

The result plots were obtained by plotting the coordinates
of the first three PCs of the feature data. One data point
represents a time interval of 781 ms. In addition, ellipsoids
were fitted to visualize the distributions of the different
data clouds and hence the clustering. The highest occur-
ring singular values were 3.31, 1.83, and 1.51 and the
corresponding PCs are composed mainly from the following
features: mean-crossing x, mean y, mean z for PC1, mean x,
mean-crossing y, zero-crossing y for PC2, and var x, zero-
crossing X, mean-crossing y for PC3.
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Fig. 3 shows the clustering of the user’s modes of
locomotion, i.e. walking, sitting and standing. The user’s
mode of locomotion is important for a new generation of
HI applications as it can correlate with the user’s hearing
wish [2]: When the user is not moving, his hearing wish does
statistically change less than during walking. By introducing
corresponding priors the adaption of the HI can be tuned.

Fig. 4 shows the clustering of the user’s hearing wish.
We distinguish “noise comfort”, which refers to a noisy
environment where loud sounds need to be damped by the HI
for user comfort, and “unintentional hearing”, which refers to
a situation where the wearer does not focus on a particular
sound source and wishes to perceive sound as natural as
possible. As “directed conversation” we define a conversation
where the speakers are talking face-to-face.

The classes described above are reflected in clusters in the
transformed feature space, which allows distinguishing them
in later context recognition implementation. The overlap of
the clusters will lead to a reduced recognition rate, depending
on the classifier. Additional PCs and features can be taken
into account to further reduce the overlapping regions of the
clusters.
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Fig. 3. Clusters in the head acceleration data (user’s mode of locomotion)

V. CONCLUSION AND OUTLOOK

We presented a newly developed ear-worn sensing and
annotation device, which is compact enough to be worn be-
hind the user’s ear. It allows us to unobtrusively capture head
movements in real life situations in order to record reference
data sets that are crucial for the development of algorithms
for multimodal HIs. A user study with 21 participants showed
that the device was perceived as comfortable and the one-
button-approach for data annotation as easy to learn and in-
tuitive. Unsupervised clustering of head acceleration showed
a separation in the feature space of relevant user activities,
which is a very promising result for the development of
multimodal HIs. We believe the novel technology will help
to push the boundaries of HI technology.

We plan to deploy our system to establish a large-scale
database of reference data covering a variety of real life
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Fig. 4. Clusters in the head acceleration data (user’s hearing wish)

settings to devise algorithms for automatic hearing program
selection based on multimodal sensing. We further plan to
investigate potential differences in the head movement of
severe hearing impaired people and normal hearing people.
Besides the applications in the development of multimodal
HIs the device can as well be used for other applications, e.g.
fall and posture detection or movement analysis in sports.
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