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Abstract— This paper presents a new type of muscle 

contraction sensor for motion intention detection algorithm in 

physical human robot interaction (pHRI). The resonance 

frequency shift by muscle contraction was measured by 

piezoelectric material. The developed sensor can measure muscle 

activations accurately over clothes and this is an advantage over 

the conventional surface Electromyography (sEMG). 

Performances of the sensor are evaluated through isometric 

wrist flexion motion tests based on maximal voluntary 

contraction (MVC) in two aspects: accuracy and speed. While 

the flexor carpi radialis (FCR) contraction tests up to 40% 

MVC, sensor outputs are compared with force sensor outputs. 

The result shows that we can measure muscle contraction by the 

developed sensor with high correlation and fast response, which 

is desirable for many physical human robot interactions 

including exoskeleton devices. 

I. INTRODUCTION 

Motion estimation of the human limb is a challenging issue 

in physical human-robot interaction (pHRI) [1, 2]. The 

estimation can be applied to support intuitively controllable 

prosthesis for limb amputees and enhance physical strength 

for the elderly. The motion estimation is generally classified 

into three steps [3, 4]: information sensing, intention 

understanding, and device control. Among the steps, we are 

interested in the information sensing, that acquires motion 

information from the limb kinematic data, limb kinetic data, 

and bioelectrical activity data [5]. Researchers study the 

bioelectrical activity data for estimation of the motions to 

reduce the electromechanical delay [6, 7]. The surface 

electromyography (sEMG) is a widely used bioelectrical 

activity data [9, 10] which is a neuromuscular signal for 

muscle activation, but it has following limitations: sensitivity 

according to attachment sites, skin conditions, and 

electromagnetic noises. Moreover, the sEMG requires direct 

contact to the skin, making the attachment uncomfortable. To 

overcome the limitations of the sEMG, researchers are 

interested in the biosignal sensors that measure the 
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physiological and physical changes of the skeletal muscle 

during the contraction. Mechanomyographpy (MMG) is 

muscle vibration signal due to lateral movement of muscle 

fibres [11, 12]. The MMG is more robust to attachment 

location and skin condition than sEMG, yet motion artifacts 

limit the accuracy. Other biosignal sensors based on muscle 

properties are also being developed: optical density [13], 

elastography [14], length change [15], pressure [16], 

myokinemetric (MK) muscle expansion [17, 18], and stiffness 

[19, 20]. However, the optical density sensor requires direct 

contact to the skin, and other sensors have limitations in 

measurement difficulties in fine muscles. 

In this paper, we develop a real-time muscle contraction 

sensor, namely active muscle stiffness sensor (aMSS), based 

on muscle resonance frequency. The sensor measures the 

muscle contraction from the stiffness actively by generating 

and sensing resonance vibrations using piezoelectric 

transducers. As muscle becomes stiffer, the resonance 

frequency becomes larger [21]. The sensor can measure the 

muscle contraction over clothes without contacting the skin 

directly, and this is a strong advantage of this new type sensor. 

II. BACKGROUND 

 

A. Principles of resonance-based stiffness sensor 

Materials have typical frequency characteristics called 

resonance, which is a tendency to oscillate at certain 

frequency. A material’s resonance frequency depends on its 

stiffness as well as mass. As the material becomes stiffer, the 

resonance frequency also becomes higher. 

In this study, the piezoelectric resonating probe was used to 

generate oscillation and measure associated changes in signals 

by muscle contractions. Because PZTs have both electrical 

and mechanical characteristics, we must analyze the response 

by considering the mechanical properties and the electrical 

impedance. The frequency shift (Δfr) of the PZT (1) is related 

to the impedance of the object in contact [21], 
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where ρ, l, ZPZT are density, length and impedance of the PZT, 

and ω, m and k are the oscillation frequencies, mass and 

stiffness of the muscle containing tissues, respectively. 
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III. METHODS 

The aMSS measures the muscle contraction based on the 

resonance signal changes, and the signal is driven from a 

piezoelectric transducer (PZT). The resonating PZT probe 

consists of two parts: PZT probe and resonance circuit, shown 

in Fig.1 (a). The probe is designed by combining a driving 

PZT with a pickup PZT. The driving PZT (PSt 150/5x5/7, 

PIEZOMECHANIC, DE) causes mechanical vibration and the 

pickup PZT (PSt 150/2x3/5, PIEZOMECHANIC, DE) 

measures the vibration. The size of the pickup PZT (2x3x5 

mm
3
) is smaller than that of the driving PZT (5x5x7 mm

3
) in 

order to reduce the effect from the PZT mass and resonance 

frequency.  The resonance circuit produces a stable periodic 

signal for the PZT probe. The resonance circuit consists of 

amplifier, filter and phase compensator. Because the raw 

signal acquired from the pickup PZT has insufficient power to 

drive the probe, it should be amplified for resonance. The raw 

signal is amplified with a gain of two, and filtered with a band 

pass filter (fcutoff: 100 - 150 kHz) to extract only the resonance 

frequency according to frequency response of the aMSS. The 

amplifier and filter distort the signal phase; the distorted phase 

is compensated with a phase shift circuit.  

The frequency-reflected signal is measured from the 

resonance signal. Fig.1 (b) shows the relationship between the 

signals conceptually. The frequency-reflected signal is then 

altered to a binary signal, a dashed line in Fig.1 (b), from the 

resonance signal, solid line. The binary signal, 0 and 5 volts, 

maintains constant amplitude for frequency counter despite of 

the resonance signal amplitude change. 

IV. EXPERIMENTAL SETUP 

The sensor performances are evaluated by comparing the 

muscle contraction in accuracy aspect. A force sensor is used 

for comparison of each performance. The target motion is 

wrist flexion, and we measure a flexor carpi radialis (FCR), 

one of major responsible muscle for wrist flexion and located 

close to skin. The muscle is measured in isometric condition in 

which the muscles contract without any appreciable joint 

movement or muscle length change. A test device is designed 

to keep the isometric wrist flexion and described in Fig.3. The 

forearm, wrist, and elbow are fixed to the device, and the 

upper arm keeps the position vertically to the forearm for the 

isometric contraction of the FCR. The force sensor is located 

on a palm of the hand to measure the wrist flexion force. The 

sensor is located on a belly of the FCR. The sensor outputs are 

acquired by a digital acquisition board (NI PCI-6251, 

 

Fig. 3. Experimental setup: aMSS, and force sensor 

  

 

Fig. 2. aMSS components; resonating PZT probe, sensor frame, and contact 

tip  

 
(a) 

 

 
(b) 

Fig. 1. (a) Block diagram of the resonance circuit for aMSS and (b) aMSS 

output signals: resonance signal, and conversion signals for frequency  
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National Instrument, US) and its software (Labview6.2, 

National Instrument, US). All of the signals are acquired with 

1 kHz sampling frequency.  

Eight healthy subjects (22 to 41 years old) are recruited in 

the experiment. Before the tests, the maximal voluntary 

contraction (MVC) of the subjects was measured during the 

wrist flexion. Subjects applied contraction force, wrist 

flexion, to the fixed frame where the force sensor is attached, 

and they were demanded to flex their wrist in range of 0 to 40 

% based on MVC for not in fatigue condition. Each of the 

force levels were repeated 5 times. Subjects followed the 

target forces that were displayed on the monitor. 

V. RESULTS 

A. Accuracy 

The sensor measures the muscle contraction and compared 

them with the resultant force. Fig.4 (a) shows signals during 

the muscle contraction. The bottom figure is the muscle 

contraction based on the MVC from force sensor. The 

frequency shift has similar trends with the normalized force, 

and this means that the signal is highly correlated with the 

muscle contraction. The force level (F) are fit ( F̂ ) using an 

exponential function of the sensor signals as equation (2). 

Table I shows individual coefficients α and β according to ΔS 

as well as the coefficient of determination (R
2
) between F̂ and 

the contraction level. 

 

)Sexp(F̂ xx    (2) 

 

The frequency shift measurement is proportional to the 

muscle contraction as described in Fig.4 (b) respectively. The 

signal is fitted exponentially to the muscle contraction and 

displayed on the graph. The correlation coefficient, R, is also 

displayed. The equation measure the muscle contraction with 

a high correlation, R= 0.964, and the average correlation 

coefficient of subjects is 0.957±0.04. The results mean that 

muscle contraction can be measured from the exponentially 

fitted sensor outputs.  

B. Muscle contraction measurement on clothes 

One advantage of the developed sensor is that it can measure 

the muscle contraction over clothes. The sensor can measure 

the muscle stiffness change through the cloth. The sensor is 

attached on the thin single-layer cotton shirt over the skin. 

Eight subjects who were already recruited in the previous test 

were recruited in this test. This test was repeated two times. In 

the first test, the muscle stiffness change was measured by the 

sensor directly in contact with the skin, which is the same 

condition as the previous test. The second test is proceeded 

that subjects wear their shirts and the sensor located over the 

cloth.  

Fig.5 overlaps the output signals from both of the two tests; 

black line is output measured on the skin, and dotted line is 

output of the second test over the clothes.  Both signals are 

 

Fig. 5. aMSS amplitude change on skin and on clothes 
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Fig. 4. (a) Voluntary isometric contraction: resonance frequency shift of 

aMSS, amplitude change of aMSS, sEMG, and muscle contraction (b) 

Contraction test: resonance frequency shift of aMSS and amplitude change of 

aMSS in proportion to muscle contraction  

  

TABLE I. 

INDIVIDUAL MUSCLE CONTRACTION MEASUREMENTS AND CORRELATION. 

 

AMPLITUDE CHANGE 

MODELING 
R

2 
αΔS βΔS 

SUMMARY 
0.648  

± 0.29 

0.026 

± 0.011 

0.957 

±0.04 
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increased during the contraction, but their change ratios are 

quite different. When the amplitude of the signal measured 

directly from the skin changes to 80 Hz, one measured through 

the cloth changes to 40 Hz during 10 % muscle contraction in 

10 to 20 sec. In 20 % contraction, signal measured from the 

skin changes to 100 Hz while signal measured through the 

cloth changes to 50 Hz. Overally, the amplitude of the signal 

through cloth is reduced 0.65 times compared with that of the 

signal on the skin.  

The frequency shift reduction in signal through cloth is 

produced from the properties of the clothes. Stiffness and 

mass of the cloth affect the stiffness change of the sensor in 

contact with the muscle through the clothes. The clothes 

reduce the stiffness change, but still, the muscle stiffness 

change can be measured. The reduction ratio of the signal 

amplitude depends on the properties of the contact clothes. 

Although the changed ratio is reduced, the muscle stiffness 

change can be measured conveniently using the sensor 

without taking off the clothes. 

 

VI. CONCLUSION 

This paper introduces a novel real-time muscle contraction 

sensor. The sensor measures the contraction from the 

resonance signals, which are highly correlated with the 

contacted object stiffness. Additionally, the sensor is able to 

measure the contraction over clothes; this can be a strong 

advantage for motion estimation sensor. To analyze the sensor 

performance, the sensor was applied on the forearm under 

isometric contraction condition and measured the muscle 

contraction. As a result, the sensor showed high correlation 

between the sensor output and the generated force from 

muscle contraction. The correlation coefficient is higher than 

0.91 and this result means that the sensor can be used for a 

muscle contraction sensor. The output of the sensor is similar 

to that of the force sensor, so the sensor can be used to 

measure the force more intuitively without any signal 

processing compared to sEMG and it is possible to use 

directly to a control input. This sensor also has the advantages 

in insensitivity on motion artifact due to much higher 

difference of frequency range, approximately a difference of 

four orders of magnitude.  

The sensor still has some limitations. The active sensor 

should improve the power efficiency and construction 

progress. Also the sensor output has some variances. One 

possibility is the thickness of skin tissue, which lies between 

muscle and the sensor. If effect of the skin tissue thickness 

becomes larger, it becomes a multilayer viscoelastic problem, 

such as skin and muscle.  
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