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Abstract— The efficient extraction of the cryoablation iceball
from a time series of 3D images is crucial during cryoablation
to assist the interventionalist in determining the coverage of
the tumor by the ablated volume. Conventional semi-automatic
segmentation tools such as ITK-SNAP and 3D Slicer’s Fast
Marching Segmentation can attain accurate iceball segmenta-
tion in retrospective studies, however, they are not ideal for
intraprocedure real time segmentation, as they require time-
consuming manual operations, such as the input of fiducials
and the extent of the segmented region growth.

In this paper, we present an innovative approach for the
segmentation of the iceball during cryoablation, that executes
a fully automatic computation. Our approach is based on the
graph cuts segmentation framework, and incorporates prior
information of iceball shape evolving in time, modeled using
experimentally-derived iceball growth parameters. Modeling
yields a shape prior mask image at each timepoint of the
imaging time series for use in the segmentation. Segmentation
results of our method and the ITK-SNAP method are compared
for 8 timepoints in 2 cases. The results indicate that our fully
automatic approach is accurate, robust and highly efficient
compared to manual and semi-automatic approaches.

I. INTRODUCTION

The standard cryoablation procedure consists of a Planning
Phase, a Probe Placement Phase and a Therapy Phase.
During the Planning Phase, an initial planning scan session,
typically x-ray CT or MRI, displaying the anatomy and
tumor is acquired prior to probe insertion. These images
are used to select and mark a safe skin entry site for
the percutaneous probe insertion. Then, depending on the
tumor size, from two to five cryoprobes (average three) are
sequentially inserted, interdispersed with repeated imaging
to confirm proper placement.

The Therapy Phase would typically consist of two 15 min
freeze cycles, separated by a 10 min thaw period. During the
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freeze cycle, monitoring images are acquired at approx 90-
270 sec intervals. In the first freeze cycle, the ablation iceball
starts to grow from near the probe tip depending upon probe
construction. Fig. 1 illustrates the growing iceball for three
types of Galil Medical Inc. (Arden Hills, MN) probes (at our
hospital only Galil IceSeed and IceRod probes are used for
MRI cryoablations). In this work, we focus on determining
the spatial extent of the segmented iceball occurring during
the first freeze cycle of kidney tumor ablations.

(a) (b)

Fig. 1. Three probe types of Galil Medical Inc. (Arden Hills, MN) (from
left to right): IceSeed, IceSphere, IceRod. (a) Photo shows iceball formed
with probes in room temperature water. (b) CT image of 10 min freeze
in a CIRS Inc. (Norfolk, VA) Image Guided Abdominal Biopsy Phantom
composed of gel.

Currently, the performance of cryoablations relies entirely
on the interventionalist’s observations, experience and the
interpretation of the image evidence at hand. To forgo
the complete reliance of the interventionalist on limited
qualitative visual assessment of ablation progress during
cryoablation, we first need to create computer software
assessing the progress of the therapy by segmenting the
ablated volume, in the form of the iceball, from images in a
fully automatic, accurate and rapid manner. This segmented
iceball can then be compared to the ultimate planned therapy
volume composed of tumor and a margin to judge progress
at any timepoint in the procedure.

Intraprocedural imaging for kidney tumor ablations at
our hospital employs the multi-plane T2-weighted MRI, the
breath-hold half-Fourier acquisition single-shot turbo spin
echo (HASTE) (3 mm slice thickness) sequence. While
radiological advantageous, HASTE images introduce some
difficulties for iceball segmentation in that the anatomy
surrounding the iceball, especially the probes, have similar
intensity values as the iceball, causing any segmentation
that relies on intensity information to fail. Semi-automatic
segmentation tools such as ITK-SNAP (www.itksnap.org) [1]
and 3D Slicer’s (www.na-mic.org) Fast Marching Segmen-
tation [2] can attain accurate iceball segmentation in retro-
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spective studies, however, their required manual operations
are not ideal for real time segmentation intraprocedurally
when the interventionalist has higher priority to patient health
responsibilities.

In this work, we describe our method, named GC-prior, to
segment the iceball, formed during cryoablation, in a fully
automatic way, at each timepoint during the initial freeze
cycle. The approach is based on graph cuts segmentation
framework, which has the advantage of fast computation,
global optimization and low sensitivity to initialization.
Graph cuts was first introduced by Greig et al. [3], and was
enhanced when Boykov and Kolmogorov proposed an effi-
cient max-flow/min-cut algorithm [4] and further applied to
N-d image segmentation by Boykov and Funka-lea [5]. Our
work’s key contribution is to incorporate shape information
into the segmentation, so that each of the individual iceball’s
segmentations is initiated with and biased toward the shape
modeled using experimentally derived parameters, such that
the actual iceball can be separated from the surrounding
anatomy having similar intensity values. Unlike Malcolm et
al.’s work [6], which equipped the graph cuts framework
with shape prior information calculated from a training data
set, we directly model the growth of the iceball to predict
a reasonable shape prior mask image at each timepoint of
the cycle. The reason why an approach based upon use of a
training data set may not work in cryoablations is that the
type of the probes, the number of probes used and the place-
ment and direction of probe insertion differs significantly
from case to case. We compared the segmentation results of
GC-prior method with ITK-SNAP method for 8 timepoints
in 2 cases, and the results indicate the proposed approach is
accurate and robust.

II. GRAPH CUTS AND SHAPE PRIOR

The two-terminal (s− t) graph construction in a conven-
tional graph cut scenario is as follows. Each pixel (voxel) in
a 2-D (3-D) image is represented by a node in the graph.
Besides these ‘regular’ nodes, there are two special nodes
called ‘terminals’. One terminal is the source (s), usually
standing for foreground, and the other terminal is the sink
(t) representing background. Each regular node is connected
to the two terminals via two edges, which are referred to
as ‘t-links’. Neighboring regular nodes are connected by
edges called ‘n-links’ according to certain connectivity rules.
Each edge is assigned a nonnegative weight, representing the
maximum flow capacity through this edge. The graph can be
divided into two parts by deleting a set of edges so that each
part contains one of the terminals. The cost of a cut is defined
to be the sum of the edge weights in the removed set.

Let P be the set of all non-terminal nodes. The labeling
f corresponding to a cut naturally defines a Markov Random
Fields (MRF) type of energy

E( f ) = λ · ∑
p∈P

Rp( fp)+ ∑
(p,q)∈N

Bp,q( fp, fq) (1)

where fp is the label for node p and N is the local neighbor-
hood. Function Rp refers to the regional term, which reflects

the penalty of assigning node p to label fp. Function Bp,q
is the boundary term that penalizes discontinuities between
neighboring nodes. The coefficient λ ≥ 0 specifies a relative
importance of the regional term versus the boundary term.
Thus, the minimum of energy (1) corresponds naturally with
the global optimum of a segmentation.

According to the max-flow/min-cut theory, the minimum
cut in a s− t graph equals the maximum flow from s to
t. There are many algorithms to find the maximum flow.
Boykov and Kolmogorov proposed an efficient augmenting
paths algorithm [4] based on searching two trees (rooted at
s and t respectively) dynamically. In [4], the regional term is
defined to be the negative log-likelihood of a pixel’s fit into
user-initialized intensity histograms

Rp(O) =− lnP(Ip|O) Rp(B) =− lnP(Ip|B) (2)

where O refers to the foreground and B refers to the
background in a binary image. The boundary term is given
by

∑
(p,q)∈N

Bp,q = exp
(
−
(Ip− Iq)

2

2σ2

)
· 1
‖p−q‖

(3)

if fp 6= fq. σ is a user defined scale parameter and ‖p−q‖
is the Euclidean distance between two voxels.

Several previous studies have incorporated the shape prior
information into the graph cuts energy function, by adding
a shape prior function either to the boundary term [7], or to
the regional term [6]. In [6], Malcolm et al. generated shape
priors using kernel principle component analysis based on
a set of training data. Their corresponding regional terms is
given as

Rp(O) = −(1−µ) lnP(Ip|O)−µ lnP(Op) (4)
Rp(B) = −(1−µ) lnP(Ip|B)−µ lnP(Bp) (5)

where P(Op) and P(Bp) are the shape priors for the fore-
ground and background, respectively, and 0 ≤ µ ≤ 1 is a
parameter to adjust the relative shape influence.

III. PROPOSED GC-PRIOR ALGORITHM

The general idea of our approach is to follow Malcolm
et al.’s framework, and to generate the shape priors in a
innovative and suitable way for our tasks. Rather than using
a training data set, we predict the shape priors based on
modeling the iceball’s growth utilizing image information
from the Baseline scan (the last set of 3D acquisition
images at the end of the Probe Placement Phase) and known
experimentally-derived parameters for the iceball growth in
time.

We first model the growth of the iceball during the first
15 min freeze. Two Galil Medical Inc.’s probes, types-
IceSeed and IceRod, are considered here for MRI-guided
cryoablations. To derive our iceball growth parameters, we
manually measured the size of the iceball for each type of
probe at four timepoints-3, 6, 10, 15 min, based on a set of
x-ray CT images taken when the probes were inserted into a
CIRS abdominal gel phantom (Fig. 1(b)). Since the contour
of the iceball for one single probe can be approximated as
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a prolate ellipsoid (see Fig. 2(b)), three measurements are
recorded: the length of major axis L and minor axis l, and the
distance (the shortest) from the intersection of the ellipsoid
and the major axis to the tip of the probe, which is denoted
as h. The centroid of the ellipsoid can be determined as the
point on the probe with its distance to the tip of the probe
being (L/2− h). For each measurement, the four collected
values are fitted with a second order polynomial curve to
estimate measurements for all timepoints.

The equation of a prolate ellipsoid centered at the origin
of a Cartesian coordinate system is

x2 + y2

(l/2)2 +
z2

(L/2)2 = 1 (6)

which can be rewritten in terms of two distances d1 and d2

d2
1

(l/2)2 +
d2

2 −d2
1

(L/2)2 = 1 (7)

where d1 is the distance to the major axis and d2 is the
distance to the centroid of the ellipsoid. We use equation (7)
to create a prolate ellipsoid mask image for each probe at
a given timepoint as shown in Fig. 2(b) and (c), and then
combine all individual masks together to form a combined
shape mask image (Fig. 2(d)).

(a) (b) (c) (d) (e)

Fig. 2. An example of predicted shape prior mask image at 15 min. (a)
Labeled probes in the Baseline scan. (b) Prolate ellipsoid mask for the left
probe. (c) Prolate ellipsoid mask for the right probe. (d) Combined shape
prior mask. (e) Corresponding region in the patient’s image at 15 min.

In a shape prior mask image, the foreground is labeled as
an intensity of 1 and background intensity is set to be 0. Let
f be the function giving the label of a point p in the image.
The shape prior in (4) is given by a hyperbolic sine-shaped
function

P(Op) =

{
min( 0.5

max(T0)2 ·T 2
0 (p)+0.5,1) if f (p) = 1

max(− 0.5
N2 ·T 2

1 (p)+0.5,0.001) if f (p) = 0
(8)

where T0 and T1 are the Euclidean distance transform to the
background and foreground, respectively, in the shape prior
mask image, and N is a threshhold such that P(Op) = 0.001
if T1(p)≥ N. P(Op) in function (8) is between 1 and 0.001,
and equals 0.5 for points on the iceball boundary. The value
of this function decreases rapidly when the point is far from
the boundary and changes slowly near the boundary, in order
to let the segmentation be mainly driven by the intensity
information in the region around the boundary. When the
(background) point is a great distance from the boundary, its
shape prior is set to be very small (0.001).

P(Ip|O) in equation (4) is defined to be

P(Ip|O) = exp
(
−
(Ip− IO)

2

2σ2

)
(9)

where σ is the same parameter as in (3) and Ip is the intensity
value at voxel p. IO is the intensity centroid for label O and
is learned as the mean intensity value of foreground voxels
in the 1 minute shape prior mask image. P(Ip|B) in (5) can
be defined in a similar manner. The normalizing constant
for the Gaussian distribution has been neglected here for
convenience. Now the regional terms (4) and (5) can be
expressed as

Rp(O) = (1−µ) ·
(Ip− IO)

2

2σ2 −µ ·P(Op) (10)

Rp(B) = (1−µ) ·
(Ip− IB)

2

2σ2 −µ ·P(Bp) (11)

where P(Op) is given in (8) and P(Bp) = 1−P(Op).
The complete algorithm is summarized as follows:

1) Label the probes and identify the tips of the probes in
the Baseline scan. (In this study, this is accomplished
manually. However, we plan to automate this initial
step via use of the 3D Hough transform.)

2) Generate 1 min shape prior mask to learn the intensity
centroids.

3) For each timepoint, first create a prolate ellipsoid
mask for each probe according to equation (7), and
then combine the individual masks together to form a
combined shape prior mask image.

4) Calculate the shape prior based on the mask image
according to equation (8).

5) Embed the shape prior into the regional terms as
in equations (10) and (11), and run the Boykov-
Kolmogorov graph cuts algorithm with the boundary
term as in (3).

IV. EXPERIMENTS AND DISCUSSION

We performed validation experiments at 8 timepoints in
2 cases-A and B, from real-time MRI-guided and mon-
itored kidney tumor ablations to compare our GC-prior
algorithm with the ITK-SNAP semi-automatic segmentation
tool. All scans were taken using a 3T wide-bore MRI
scanner (Siemens Verio; Erlangen, Germany) with multi-
channel abdominal coils. Multiplane T2-weighted imaging
using breath-hold half Fourier acquisition single shot turbo
spin echo (HASTE) sequence was used. Both cases used
Galil Medical Inc. IceRod probes and patients had a good
breath-hold capability. Motion artifacts between timepoints
are neglected, so that inter-scan registration is assumed. Case
A consist of three probes and five timepoints in the first
freeze, i.e., 3, 6, 9, 12, 15 min. Case B has five probes and
three timepoints in the first freeze, at 5, 10, 15 min. The
images were first pre-processed with histogram equalization
and then resliced and resampled to have isotropic voxels with
1mm resolution.
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All the experiments were performed using our GC-prior
method with the same parameter values, which were de-
termined experimentally, and thus no manually parameter
adjustment was needed. The algorithm was implemented
using C++, and execution time for the whole image (340×
290×60) was about 15 seconds on a modern PC.

An example of the iceball segmentation for case A at 6
min of the first freeze is shown in Fig. 3. For comparison,
the manual segmentation result shown in Fig. 3(d) was
generated by labeling the iceball manually slice by slice
using the ITK-SNAP manual segmentation tool. Fig. 3(e)
shows the result of ITK-SNAP semi-automatic segmentation
using region competition snakes, requiring manual input
and operation. For comparison, we also include in this
experiment the segmentation result using 3D Slicer’s Fast
Marching Segmentation Module, which is shown in Fig. 3(f).
This tool is also semi-automatic. Fig. 3(h) shows the result of
a naive standard graph cuts segmentation operating without
the benefit of the shape prior we introduced here.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Segmentation of the iceball for case A at 6 min of the first freeze.
(a) Original scan with region shown in zoomed view of this figure. (b)
Close-up view of the iceball. (c) Predicted shape prior mask. (d) Result of
manual segmentation. (e) Result of ITK-SNAP semi-automatic segmentation
using region competition snakes. (f) Result of 3D Slicer’s Fast Marching
Segmentation Module. (g) Result of GC-prior automatic segmentation
method. (h) Result of standard graph cuts segmentation without the shape
prior.

The overlap between the (semi)-automatic segmentations
and the manual segmentation was computed using the Dice
Similarity Coefficient (D(X ,Y ) = 2|X ∩Y |/(|X |+ |Y |)), and
is shown in Fig. 4. Although our GC-prior method is fully
automatic for the segmentation problem at each timepoint,
its mean Dice Similarity Coefficient of the 8 timepoints
is only slightly lower than the ITK-SNAP semi-automatic
segmentation, which therefore indicates its accuracy.

From these experiments, it is notable that both ITK-SNAP
semi-automatic segmentation and 3D Slicer’s Fast Marching
Segmentation require manual intervention to perform each
timepoint’s segmentation. These semi-automatic methods
tend to include the location/shape information through man-
ual input strategies. These approaches can attain high accu-
racy in retrospective studies, however, they become difficult
and time-consuming for real time segmentation, in the case
of cryoablations. In contrast, GC-prior method incorporates
shape influence into the segmentation automatically at each

Fig. 4. Dice Similarity Coefficient of ITK-SNAP semi-automatic segmenta-
tion and GC-prior automatic segmentation method compared to the manual
segmentation for cases A and B. The mean Dice Similarity Coefficient for
the ITK-SNAP and the GC-prior methods are 0.91 and 0.9, respectively.

timepoint. As shown in Fig. 3(c), the validation study results
show that the predicted shape prior may deviate from the
actual computed iceball at any timepoint. This expected
deviation is caused by the error introduced in the probes’
identification, the error made in the first-order assumption
of simple iceball summation from multiple probes, and error
from the influence of perfusion from local blood vessels on
the iceball’s shape. Nonetheless, we see from Fig. 3(g) and
Fig. 4 that our accurate segmentation results are still strongly
dependent on the intensity information, with the shape prior
providing the bias among different cases, which is a sign of
our method’s robustness.

V. CONCLUSIONS

We developed a fully automatic segmentation method to
extract the cryoablation iceball from time series of 3D images
during the first freeze cycle in kidney ablations. Our method
incorporates shape prior information into the standard graph
cuts segmentation framework in order to separate the iceball
from nearby anatomy with similar intensity values. The shape
prior is generated by modeling the growth of the iceball
using experimentally derived parameters. No training data set
is necessary. We compared the segmentation results of our
approach and other semi-automatic segmentation methods
for 8 timepoints in 2 cases, and the results suggest that our
method is accurate and robust.
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