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Abstract— We are developing a first-principles task-based
approach to the optimal design and evaluation of ultrasonic
imaging systems. Examining five clinical features related to
breast lesion diagnosis, we quantified information flow at several
stages in the image formation process. We found that the
diagnostic performance of a given system configuration will
vary with the patient feature, sometimes significantly. Our
analysis expresses diagnostic performance of an imaging system
for a specific clinical task as a function of patient properties that
are separable from instrument properties. Hence it is possible
to show how image quality metrics, like spatial and contrast
resolution, combine with patient features to determine feature
discriminability. In this paper, we describe an information the-
oretic approach to diagnostic performance evaluation that has
given us a new quantity, the acquisition information spectrum
(AIS). Like NEQ in radiography, AIS in sonography provides
a foundation for medical ultrasonic imaging system design.

I. INTRODUCTION

Assessments of image quality are most relevant when they
predict the performance of instruments for accomplishing
essential clinical tasks. Measurements of spatial and contrast
resolution and noise properties are important but incomplete
characterizations because they do not consider compromises
among the metrics that are required to address various
clinical task.

To develop a more comprehensive assessment, we model
an ultrasonic imaging system as a device that transfers
information from patients to medical decision makers (ob-
servers). Image quality, therefore, is based on the efficiency
by which devices transfer specific task information. We focus
on binary decisions made by observers between two classes
of data that represent disease absence or disease presence.
Observers can be expert humans or algorithms implementing
decision theory. Of particular interest is the ideal observer, an
algorithm that applies Bayes’ Criterion (log-likelihood ratios)
to generate scalar test statistics from image pairs that renders
decisions guaranteed to meet the Neyman-Pearson minimum-
error criterion of achieving the largest area under the ROC
curve (AUC). In situations where the test statistic is normally
distributed – the normality condition – it is now well known
that the gold standard for system evaluation, AUC, can be
related to the ideal observer signal-to-noise ratio (SNRI ) [1],
and SNR2

I is a linear function of standard image quality
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metrics. Therefore the performance of a system at delivering
clinical information can be predicted from properties of the
clinical task and instrument properties.

The objective assessment of image quality was formalized
for photon-based modalities during 1980s-1990s by Wagner,
Barrett and others. Among the many prominent concepts to
emerge is the SNR theory [1] that factorizes SNR2

I in the
spatial frequency domain into patient features and instrument
properties via the noise-equivalent-quanta (NEQ). NEQ is a
product of three imaging system properties: large-area gray-
scale transfer (H̃ , contrast resolution), modulation transfer
function (MTF, spatial resolution), and noise power spec-
trum (NPS). Through the normality condition, SNR analysis
relates best-possible performance to instrument properties,
which is the basis for modern radiographic and radionuclide
imaging design and optimization [1], [2].

Unlike radiography, the formalisms underlying objective
image assessment of sonography remain an open question.
The biggest reasons are the post-beamforming nonlinear
processing applied to sonographic images [3] and fundamen-
tal differences in object contrast: photon-based modalities
encode contrast in the mean properties of tissues while
sonography encodes contrast in the covariance matrix de-
scribing tissue properties. The ability of modern ultrasonic
systems to allow access to beamformed RF echo data has
enabled us to shift the analysis to the RF signal domain
and avoid nonlinearities [4], [5]. Because contrast is found
from the covariance matrix of stochastic tissue scatterers,
the test statistic is a quadratic function of the RF data. This
fact complicates the analysis by challenging the normality
condition assumption. The effects are most pronounced for
small-area diagnostic tasks, for example, those focused on
lesion boundary discrimination.

To find solutions to these challenges, we adopted
Kullback-Leibler entropy [7] in the definition of the diagnos-
tic information contained within two classes of patient data.
Information quantifies class separability in the form of the
scalar divergence quantity, J . In this paper, we leverage the
concept of NEQ from radiography to formulate an equivalent
quantity for sonography based on J instead of SNRI that
loses meaning as normality is lost. We found a closed-form
equation that shows how J can be used to link image quality
metrics to task performance in sonography. AIS is a key
component in describing the effectiveness of an ultrasonic
system at transferring task information from the patient to
RF data. Model observers and training human observers are
used to reveal the efficiency of moving information from the
RF signal into the image.
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II. BACKGROUND

SIGNAL MODELING. We employ standard linear-system
models of RF echo signal generation in sonography [4], [5].
RF echo vector g arises as a noisy discrete- space-to-discrete-
time linear transformation from object/patient scattering vec-
tor f through matrix multiplication,

g = Hf + n . (1)

H is the system matrix and n is acquisition noise
modeled by the zero-mean white Gaussian distribution,
n ∼ N (0,Σn), where noise covariance matrix Σn = σ2

nI
and I is the identity matrix. H is constructed from a
pulse-echo spatiotemporal impulse responses generated
using the Field II program [8] with parameters selected to
model a 1-D linear array from a Siemens Antares system. f
is a vector assembled from a reformatted scattering object
described as a zero-mean multivariate normal process,
f ∼ MVN(0,Σobj). The nonstationary covariance matrix
of the scattering object Σobj = σ2

obj(I + Si), where Si

encodes the lesion feature underlying data class i = 0, 1. S0

indicates a benign feature while S1 is a malignant feature.
Task information is defined as ΔS = S1 − S0.

IDEAL OBSERVER. Because f is passed through a linear
imaging system, g is also a zero-mean MVN process but
with covariance matrix for the ith data class given by

Σi = σ2
objH(I+ Si)H

t + σ2
nI . (2)

Denoting pi(g) as the pdf for RF echo data from class i (the
likelihood function), the ideal observer response to g is the
logarithm of the likelihood ratio [2]

λ(g) = ln
p1(g)

p0(g)
−→ 1

2
gt(Σ−1

0 −Σ−1
1 )g . (3)

The last form is obtained by removing terms unrelated to g.

PERFORMANCE METRICS. The ideal observer compares its
scalar test statistic λ to scalar threshold t when making
decisions. From distributions λ(g|i), AUC is calculated
and converted to detectability index dA for comparing IO
responses with other observers via

dA = 2erf−1(2AUC− 1) , (4)

where erf(·) is the error function.
For normally distributed λ, dA = SNRI , which is mea-

sured from the moments of λ [1], [2],

SNR2
I =

(E1{λ} − E0{λ})2
(var1{λ}+ var0{λ})/2 . (5)

where Ei{λ} and vari{λ} are means and variances of the test
statistic for the ith class of data. Consequently, for normal λ,
the three performance metrics are simply related by SNRI =
dA = 2erf−1(2AUC− 1).

III. ACQUISITION INFORMATION SPECTRUM

RADIOGRAPHY Wagner and Brown [1] derived an expres-
sion for SNR2

I in the 2-D spatial-frequency domain (u, v) of
the image data. In radiography, where contrast is defined by
variations in object mean, λ is a linear function of g and the
normality of λ is reasonable to assume in all but extreme
situations. They showed that ideal performance for photon-
based imaging, SNR2

I , is a linear function of the clinical
task, ΔS̃(u, v)|2, and quality of the imaging instruments
NEQ(u, v) = |H̃(0, 0)|2 MTF2(u, v)/NPS(u, v). That is,

SNR2
I =

∫
∞

du

∫
∞

dv |ΔS̃(u, v)|2 NEQ(u, v) . (6)

The derivation assumes a linear shift-invariant (LSI) system,
stationary noise, and the task of discriminating low-contrast
circular lesions from a constant-mean background. NEQ
combines instrument properties into one quantity that
characterizes the ability of the instrument to transfer object
contrast into recorded data at each frequency channel.
Combining (5) and (6), we see how performance obtained
from observer measurements are related to predictions based
on instrument properties.

SONOGRAPHY Eq (3) shows that λ is a quadratic function
of g. For MVN echo data, λ is thus described by a χ2

distribution [6]. When observers view image data where
the task extends spatially over an area large compared with
the correlation length of the image data, the Central Limit
Theorem allows us the assume normal λ. For lesion boundary
discrimination, where the task is distributed over a small area
in the image data, the CLT does not ensure normality. Hence
SNR2

I loses relevance since its relationship with dA and AUC
is unknown.

In sonography, detectability is better described by the
Kullback-Leibler divergence J . To derive an expression
analogous to (8) for sonography, we write J in terms of class
covariances and then image quality parameters. For two class
distributions of RF echo data with zero mean and covariance
matrices Σi [9],

J =
1

2
Tr

[(
Σ−1

0 −Σ−1
1

)
(Σ1 −Σ0)

]
. (7)

Inverting large matrices is achieved by a power series expan-
sion [4]. Limiting our study to low-contrast feature detection
we can truncate the series expansion after the first term to
approximate (7) in closed form as

J ≈ 1

2
Tr

[
Σ−1

s (ΔΣ1 −ΔΣ0)Σ
−1
s (Σ1 −Σ0)

]
, (8)

where

Σs = σ2
objHHt + σ2

nI ,

ΔΣi = σ2
objHSiH

t . (9)

Since we will use J in place of d2A, we obtain from (8),

d2
A ≈ 1

2
Tr [KsΔSKsΔS] , (10)
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Fig. 1. One-dimensional AIS(u) and ˜Ks(u) curves are plotted versus
spatial frequency along the beam axis for the task of lesion detection.

where Ks � HtΣ−1
s H and now ΔS = σ2

obj(S1 − S0)
defines task information.

Under the LSI/stationary assumptions, Ks can be diago-
nalized using Fourier techniques as Ks = F−1K̃sF, where
F is the forward DFT matrix [2]. Since K̃s is diagonal, its
elements can be represented by a single index, K̃s(k, k) =
K̃s(k). Similarly, ΔS = F−1ΔS̃F, and therefore (10) is
expressable as a double sum over frequency indices

d2A � 1

2
Tr

[
K̃sΔS̃K̃sΔS̃

]
=

1

2

∑
k

∑
l

K̃s(k)ΔS̃(k, l)ΔS̃(l, k)K̃s(l). (11)

Since ΔS is diagonal, ΔS̃ is Hermitian and stationary, i.e.
ΔS̃ (l , k) = ΔS̃∗(k , l) = ΔS̃ (l − k), in which ΔS̃ (k) is
the Fourier transform of ΔS but re-arranged into a column
vector before taking the transform.

Expressing (11) as a continuous function of 2-D spatial
frequency variable, u = (u, v), we have

d2A � 1

2

∫
∞

du

∫
∞

du′ K̃s(u
′)
∣∣∣ΔS̃(u− u′)

∣∣∣2 K̃s(u)

=

∫
∞

du
∣∣∣ΔS̃ (u)

∣∣∣2 {
1

2
K̃s(u

′) ∗ K̃s(−u′)
}
(u)

=

∫
∞

du
∣∣∣ΔS̃ (u)

∣∣∣2 AIS(u) � d2Ks . (12)

where K̃s is given by

K̃s(u, v) =

∣∣∣H̃(u, v)
∣∣∣2∣∣∣H̃(u, v)

∣∣∣2 σ2
obj + σ2

n

. (13)

Comparing (12) to (6), we find performance in both cases
depends on task contrast |ΔS̃|2. However the autocorrelation
function of K̃s, we call is the acquisition information spec-
trum or AIS(u), serves the role in sonography that NEQ(u)
does in radiography. It provides an avenue for relating image
quality metrics to task information.

AIS(u) provides a rigorous connection between task infor-
mation and image quality parameters. It may be interpreted
as the number of independent samples of task information
being offered to the observer at spatial frequency u. K̃s(u)
in Eq. (13) resembles a generalized NEQ quantity [2] for
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Fig. 2. (Left) Variance masks of the sine-wave detection task (Top), and
examples of B-mode (middle) and WFB-mode (bottom) images. (Right)
The AIS with task information over the axial spatial frequency. Task A is
at 0.35 (mm−1) corresponding to the map variance in the left, Task B is at
8.77 (mm−1) and Task C is at 20.24 (mm−1).

photon imaging in a variable background. Here acoustic
speckle in the RF signal is considered to be a random
background. K̃s(u) is analogous to GNEQ [2] but there
are important differences. First, the background randomness
described in (13) is always present in sonography because
it is due to coherent speckle present in the RF echo signal.
Second, since AIS = 1

2ACF(K̃s) and not K̃s, there is a
broader system responsiveness to object contrast than one
expects from MTF(u) = |H(u)|/|H(0)| alone. Also the
bandpass nature of the RF echoes means that AIS always
has three lobes centered at zero frequency (see Fig. 1).

IV. INFORMATION LOSS OVER THE SPATIAL
FREQUENCY SPECTRUM

In radiography, NEQ is proportional to the MTF2. It is
maximum at the origin and generally decreases at higher spa-
tial frequencies, reflecting the degradation of image quality
as the demand for spatial resolution increases. In sonography,
AIS is maximum at zero frequency but its curve has three
lobes formed from the bandpass nature of RF echo signals
(see Fig. 1). The central main lob has amplitude informa-
tion and the sidelobes contain phase information present in
RF signals but not in sonograms. In this section, we are
interested in (a) validating the curve for the AIS of RF
data and (b) learning how information is lost during echo
demodulation.

To validate the AIS prediction, we applied the ideal
(IO) and Smith-Wagner (SW) computational observers to
data simulations to study the relative loss of information
caused by echo demodulation. SW is the ideal observer for
low-contrast sonographic lesion detection [3], and is sub-
optimal and human-like for other tasks [4]. Both observers
were tasked with detecting sinusoidal modulations in object
scattering variance using a narrow-band task [10]. These
tasks were Gabor pulses that became the variance masks as
shown in Fig. 2 (left, top). The amplitude of the Gabor pulse
is set at -25 dB of the background to guarantee a low-contrast
task. Setting the carrier frequency of the Gabor pulse to low
frequency, we plot the resulting task function |ΔS̃(u)|2 in the
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Fig. 3. Comparisons among the detectability indices d2A converted from
area under ROC of the ideal observer, d2Ks calculated from Eq. (12), and d2B
and d2WB calculated from the performance of the Smith-Wagner observer.

Fourier domain on the right labeled Task A. By increasing
the carrier frequency, we were able to sweep the task over
a broad range of spatial frequencies. At each frequency u0,
index d2Ks is calculated through Eq. (12) for |ΔS̃(u)|2 �
A2δ(u−u0, 0). The narrow-band response meant the Gabor
pulse approximates a Dirac delta for sampling value of the
AIS curve. When frequency sampling is dense enough, the
AIS curve can be mapped discretely in terms of d2Ks, and
measured and predicted values for AIS can be compared as
in Fig. 3.

For each value of u0, 2000 pairs of RF signals are gen-
erated for observers to view when calculating detectability
indices. IO performance is converted to d2A using RF echo
data and compared with d2Ks. SW observers viewing the
B-mode images generated from the same echo data gave
responses that we represent by the detectability index d2B . We
also Wiener filtered the RF echo data before computing B-
mode images and used SW observer to estimate performance
denoted by d2WB . An example of B-mode and WFB-mode
images for the variance maps are shown in Fig. 2(left, middle
and bottom). The indices are also plotted in Fig 3.

V. DISCUSSION

Larger values of detectability indices reported in Fig. 3
represent superior task performance. Measured ideal per-
formance d2A is very similar to that predicted by d2Ks,
which suggests the shape of AIS plotted in Fig. 1 is what
can be expected experimentally. Both curves have peaks at
origin and at 18.89 mm−1, and both have a minimum at
9.44 mm−1. The location of maxima and minima depend
on the bandwidth and center frequency of the ultrasound
pulse. Predicted performance values, d2Ks, are 7-9% lower
than measurements via d2A and yet the corresponding AUC
values agree within 2%. Thus AIS is a realistic representation
of instrument properties, as distinct from patient features,
and these two quantities can be combined in the frequency
domain to predict task-dependent system performance.

Note that d2B is reduced to about 25% of d2A, suggesting
that 75% of task information is lost through demodulation.
The shape of d2B monotonically decreases as we see with
NEQ in photon imaging because sonography uses base-band

data that discards high frequency sensitivity. d2B is reduced to
zero at 7-9 mm−1 with the loss of phase information because
of spatial resolution limitations. Image speckle blocks the
object details at frequencies higher than 9 mm−1. Wiener
filtering the echo signal before modulation recovers most of
the information in the first lobe of the AIS curve (d2WB �
d2A), but the system cannot respond to high frequencies
because of demodulation. Recovering patient information
lost to demodulation is a subject of future investigation.

In this paper, we propose AIS as a fundamental quantity
for relating instrument properties to task performance. The
nature of sound tissue interactions changes the source of
object contrast in sonography, which means that AIS has
a more complicated frequency structure than NEQ in radio-
graphy. The information theoretic approach described here is
intended to provide a rigorous foundation for evaluating and
optimizing sonographic systems used for medical diagnosis.
Although this treatment is focused on the acquisition stage of
image formation, the display stage must also be addressed
to predict overall clinical performance. The ideal-observer
analysis can help designers adjust acquisition parameter to
maximize RF data information, but human observer studies
are needed to ensure accessibility of the information to
human observers.
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