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Abstract— In this paper, we investigate the reconstruction of 

a signal defined as the sum of   orientations from samples tak-

en with a kernel defined on the 3D rotation group. A potential 

application is the recovery of fiber orientations in diffusion 

magnetic resonance imaging. We propose an exact reconstruc-

tion algorithm based on the finite rate of innovation theory that 

makes use of the spherical harmonics representation of the 

signal. The number of measurements needed for perfect recov-

ery, which may be as low as   , depends only on the number of 

orientations and the bandwidth of the kernel used. Further-

more, the angular resolution of our method does not depend on 

the number of available measurements. We illustrate the per-

formance of the algorithm using several simulations. 

I. INTRODUCTION 

We consider a function   on the unit sphere in three di-
mension defined as the sum of   weighted Diracs such that 
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where                    and each couple 

(     ) corresponds to one orientation. The function to 

sample 

 (   )  (   )(   )  

is obtained by convolving   with a sampling kernel   de-

fined on the 3D rotation group and where the convolution   
has been appropriately redefined. Our objective is to recover 

  from as few measurements of   as possible. 

A notable application is the recovery of fiber orientation 

in diffusion weighted magnetic resonance imaging (MRI). In 

this case,   is the fiber orientation distribution function 

(ODF) and   is the response of a single fiber [1]. The typical 

way to recover the fiber ODF is to perform a spherical de-

convolution [2]. However, because of the limited number of 

measurements available in diffusion MRI, only a lowpass 

version of the fiber ODF can be recovered. This is a limit 

common to other methods [3, 4, 5], where the angular reso-

lution is a function of the number of measurements. Our 

proposed method improves this situation because the angular 

resolution is completely independent of the number of 
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measurements. Note that we address the general problem of 

recovering   from the samples of  , thus we will not consid-

er the specific characteristics of diffusion MRI signals, i.e.    
 , and   are not necessarily real, positive, and symmetric. 

Due to space limitations, we will also restrict our discussion 

to noiseless measurements. 

The remainder of this paper is organized as follows. In 

Section II, we provide the essential background information 

on spherical and rotational harmonics, and spherical decon-

volution. In Section III, we present our new reconstruction 

algorithm along with specific requirements of the sampling 

kernel. We illustrate the performance of the algorithm in 

Section IV through numerical simulations and conclude in 

Section V. 

II. SPHERICAL AND ROTATIONAL HARMONICS 

In this section, we present a brief outline of Fourier analy-

sis on the sphere    and the group of all     real orthogo-

nal matrices with a determinant of one is denoted by   ( ). 
We restrict our discussion to the definitions and properties 

that will be used in the following sections. For a more de-

tailed analysis, we refer the reader to [2, 6]. 

A. Rotational harmonics 

Let     ( ) be a     rotation matrix that can be ex-

pressed as 

 (     )   ( ) ( ) ( ) 

where 

 ( )  [
          
         
   

]   ( )  [
         
   

          
]   

and               . Healy et al. [2] define the 

rotational Fourier transform on   ( ) as 
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with         and         . The rotational har-

monics   
    are given by 
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B. Spherical harmonics 

The spherical harmonic of degree   and order   is de-

fined as 

   
 (   )       

 (    )    (   ) (1)  

where     is a normalization coefficient,  

  
 (    )  (  )      
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and 

  ( )  
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Now consider the square integrable function  (   )  
  (  ). It is sometimes more convenient to express   as a 

function of a unit vector   related to (   ) by  

 (   )  [                    ]  (2)  

where    denotes transposition. To simplify the notation, we 

will interchangeably write  ( ) and  (   ) where we as-

sume that both functions are equal if    , and   are related 

by Eq. (2). Healy et al. define the spherical Fourier trans-

form on    by 
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  ∫  ( )  
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where the overbar denotes conjugation and the  ̂ 
  are the 

spherical harmonic coefficients. Because the spherical har-

monics   
  for         and        form an or-

thonormal basis for   (  ), any     (  ) can be ex-

pressed as 
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 (   )

 

    

 

   

  (3)  

C. Spherical convolution 

Let     (  ) and     (  ( )) and define     (  ) 

as the spherical convolution of   and   given by 

  ( )  (   )( )  ∫  ( ) (   

  ( )

 )    (4)  

The results of Healy et al. [2] prove the spherical convolu-

tion property 

  ̂ 
  (   )̂
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for each         and any       . An important 

relationship between the spherical and rotational harmonics, 

used to prove the convolution property, is that  
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III. SAMPLING ORIENTATIONS 

As stated in the Introduction, the function to sample is 

given by 

 ( )  (   )( ) 

where     (  ( )) is the sampling kernel and 

  (   )  ∑   (         )
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with     ,           and          . Note that 

the function   is completely defined by    parameters; the 

  orientations (     ) and the   amplitudes   .  

Our objective is to recover   exactly from as few meas-

urements of   as possible given the knowledge of   and  . 

The reconstruction algorithm has two major steps: 

1. Recover the spherical harmonics of   using the samples 

of  . 

2. Using the spherical harmonics, recover the parameters 

  ,    and    which fully define  . 

The details of these two steps are presented in the following 

sections. 

A. Recovering the spherical harmonics 

We previously defined the signal measured in diffusion 

magnetic resonance imaging as  

 (   )  (   )( )  ∫  ( ) (   

  ( )

 )    

Because the function   is defined on the two dimensional 

sphere   , we can substitute it by its spherical harmonics 

expansion defined in Eq. (3) to get 
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To expand the spherical harmonics, we can use the relation 

of Eq. (6) and rearrange the order of the sum and the integral 

to get 
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Substituting the definition of the rotational Fourier transform 

yields 

 (   )( )  ∑ ∑  ̂ 
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where 

 ̂ 
 ( )  ∑   
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If we assume the sampling kernel   has a bandlimit  , mean-

ing  ̂ 
     for    , Eq. (8) and hence the measured sig-

nal can be expressed as 
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which requires ∑ (    ) 
    values of   to solve for  ̂ 

 . If 

we have complete control over  , the number of measure-

ments required can be reduced to    by setting all superflu-

ous  ̂ 
   to zero. 

Now that the spherical harmonics of   can be recovered 

from the samples of  , we move on to recovering the orienta-

tion from the spherical harmonics. 

B. Recovering the orientations 

Recall the definition of the spherical harmonics 

 ̂ 
  ∫  ( )  
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and replace   by the stream of Diracs defined in Eq. (7) to 

get 
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where we used the sifting property of the Diracs. Substitut-

ing the definition of the spherical harmonics in Eq. (10) 

yields 

  ̂ 
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We first consider the associated Legendre polynomials of 

equal order and degree   
 (    ) given by 

  
 (    )       

   

where    is a normalization coefficient. Replacing 

  
 (    ) in Eq. (11) gives 
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Using the notation     
    ,         ,        , and 

    ̂ 
  (     ) we can reduce Eq. (12) to 
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The readers familiar with finite rate of innovation signals [7, 

8] will immediately recognize the sum of exponential form 

and conclude that    and    can be recovered using the an- 

 

nihilating filter method. We briefly outline the recovery pro-

cedure here. 

Consider the polynomial of degree   given  

 ( )  ∏(    
  )

 

   

 

whose roots are   
  , where        . The convolution 

between the filter whose coefficients are           and the 

   is 
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We conclude that the roots of the annihilating filter   

uniquely define the values    with        . Note that 

        where    is a complex exponential and    
      is a real number in the interval [   ]. In other words, 

   and    correspond to the phase and magnitude of   , re-

spectively. Unfortunately, the angle    [   ] cannot be 

obtained directly from    because two values of     map to 

the same   . However, now that we know the values   , the 

quantity    can be recovered by solving  

   ∑    
 

 

   

 

for          . 

To disambiguate the values of   , we turn to the associat-

ed Legendre polynomials  

  
              

     

and their associated spherical harmonics 

 ̂ 
          ∑   

                  

 

   

  

Again simplifying the notation with          and 

     ̂ 
    (     ) we find that  

    ∑      
   

 

   

  (14)  

All the coefficients in the Eq. (14) are known except for    

which can be recovered using    for        . Because 

(c) (b) (d) (a) 
Figure 1: Illustration of the performance of the reconstruction algorithm for   orientations. The separation angles are    

(a),    (b),    (c) and    (d) degrees. In all cases, the orientations are recovered to machine precision.  
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     has a one-to-one correspondence in the interval [   ] 
the value of    uniquely defines the angle   . 

IV. NUMERICAL SIMULATIONS 

To evaluate the reconstruction algorithm presented in the 

previous section, we performed several simulations with 

   ,  , 4, and 5. Without loss of generality, we consid-

ered only the sampling kernel whose rotational harmonics 

are 

 ̂ 
   {

    
          

 

with     . Note that this kernel is suboptimal if we wish 

to minimize the number of measurements required. 

Given   and a sampling kernel   with a bandwidth  , the 

artificial data is generated as follows: 

1. Randomly select the values for   ,   , and    with 

       . 

2. Compute the spherical harmonics of   using Eq. (11).  

3. Compute the spherical harmonics of   using to Eq. (5). 

4. Generate the samples at the desired location         

using 

 ( )  ∑ ∑  ̂ 
   

 ( )

 

    

 

   

  

We assume the number of fibers   is known a priori and that 

the number of samples is sufficient to compute  ̂ 
  from 

Eq. (9). Since the location of the samples is irrelevant, we 

selected them at random on the north half-sphere. 

For the case    , we tested separation angles varying 

from    to    degrees. In all cases, the orientations were 

recovered to machine precision. Sample results for separa-

tion angles of           and    are illustrated in Figure 1. 

The radius in a direction corresponds to the magnitude of the 

real component of the signal in that direction. Positive and 

negative values are displayed in gray and black, respective-

ly. The solid lines represent the orientations. 

TABLE I.  MEAN ANGULAR ERROR AS A FUNCTION OF   OVER 100 

SIMULATIONS 

                 

Error (deg) 0.0000 0.0006 0.3273 2.3745 

We also tested     random generated orientations for 

each        , and   (in diffusion MRI, the number of 

fibers in a voxel is generally assumed  to be less than or 

equal to 3). The mean angular error is presented in Table I. 

Sample results for each value of   are illustrated in Figure 2. 

The angular error is negligible for     and increases with 

 , probably due to numerical errors. 

V. CONCLUSION 

In this work, we have presented a new algorithm to recov-

er orientations on the unit sphere in three dimensions. In the 

noiseless case, the proposed method is exact if the band-

width of the kernel satisfies      and that the number of 

measurements satisfies   ∑ (    ) 
   . When compared 

to other spherical deconvolution, our method is advanta-

geous because the angular resolution does not depend on the 

number of measurements available. Investigating the robust-

ness of our method to additive noise and applying it to diffu-

sion MRI is the subject of our current research. 
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Figure 2: Illustration of the performance of the reconstruction algorithm for (a)    , (b)    , and (c)     orien-

tations. 
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