
  

Abstract— This paper presents the real-time implementation 

of an environment-adaptive noise suppression algorithm on an 

FDA-approved PDA platform for cochlear implant studies. This 

added capability involves identifying the background noise 

environment in real-time and adapting a data-driven noise 

suppression approach to that noise environment on-the-fly. 

Various software optimization steps are taken in order to 

achieve a real-time throughput on the PDA platform involving 

both the speech decomposition and the adaptive noise 

suppression components. Real-time timing results and a 

quantitative measure of noise suppression are presented. 

 

I. INTRODUCTION 

The number of cochlear implants (CI) patients has 
increased significantly during the last decade [1]. A personal 
digital assistant (PDA) interface research platform has been 
recently approved by FDA for clinical studies with Nucleus 
CI patients [2]. This platform allows the assessment of 
speech processing algorithms for CI studies. The real-time 
implementation of the CI speech processing pipeline on this 
platform was covered in our previous work [3, 4].  

In this work, a noise suppression capability is added to 
this platform that is designed to run in real-time in 
conjunction with the speech processing pipeline. This 
capability is useful and necessary as it has been shown that in 
noisy environments the speech understanding of CI patients 
decreases significantly [5, 6].  This added component or path 
consists of a noise feature extractor, a noise classifier, and a 
noise suppression module. The classifier uses features from 
the noise signal to identify the background noise 
environment in order to switch to those parameters of the 
noise suppression module that are optimized for that 
particular noise environment. The thrust of this paper is on 
the optimization steps taken in order to allow real-time 
implementation of all the modules on the FDA-approved 
PDA research platform. 

The paper is organized as follows. Section II gives an 
overview of the CI speech processing path together with the 
details of the adaptive noise suppression component. Section 
III discusses the optimization steps taken for the purpose of 
achieving its real-time implementation on the PDA platform 
together with the timing outcomes. Section IV includes the 
noise classification and suppression results that are obtained 
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when running the entire speech processing pipeline in real-
time. Finally, the conclusions are stated in section V. 

II. COCHLEAR IMPLANT SPEECH PROCESSING PIPELINE 

Speech processing in a CI system includes decomposition of 
the input signal into different channels and extracting the 
channel envelope by summing up the power from all 
frequency bins falling within the channel bandwidth. In [3], 
we used a recursive wavelet-packet transform (WPT) to 
decompose the input speech into different channels. The 
extracted channel envelopes were compressed and an n-of-m 
strategy were then applied, where n denotes the maximum 
amplitude channels out of total of m channels that are 
selected at any time for generating CI stimulation pulses.  

A noise suppressor along the speech processing path is 
added in this work, see Fig. 1, in order to track the noise 
spectra and apply an appropriate spectral weighting to 
suppress it [7-9]. The weighting function is derived using a 
log-MMSE estimator. To take into consideration the 
variability in the noise spectra for different types of 
background noise, several environment-specific noise 
suppressors have been proposed in the literature. In this 
work, we have considered a data-driven approach due to its 
computational efficiency. In order to change the noise 
suppressor parameters based on the background noise 
environment, a feature extractor and a classifier are 
deployed.  

A. Noise suppression  

In the spectral domain, a gain function is assumed to be 
applied on the magnitude spectrum of the input noisy speech 
signal providing an estimate of the associated clean 
spectrum. This gain is represented as a function of prior and 
posterior SNRs minimizing the mean squared error over a 
training set of noisy and clean sample pairs [9]. Decision-
directed approach is the most commonly used method to 
estimate the prior SNR. However, as discussed in [10], this 
approach leads to biased and erroneous results as some SNR 
values cause underestimation or overestimation of noise 
spectra. In addition, the gain function solution obtained using 
the MMSE and log MMSE estimators in [9] assume specific 
distributions for the noise and speech spectra which may not 
necessarily be the best fitting distributions.  

To account for such modeling and estimation 
shortcomings, a data-driven approach, as proposed in [10-
13], is adopted here where the gain values are obtained via a 
minimization formulation. For non-stationary noise tracking, 
the tabular representation is considered to provide an 
estimation of noise spectrum. Then, this estimate is used in 
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the analytic gain suppression function to provide the 
enhanced magnitude spectrum, e.g. the log-MMSE estimator 
as used in [10]. The data-driven nature of this approach 
allows one to optimize the gain representation independently 
for each noise environment by considering the corresponding 
dataset. 

Since this solution is optimal in the MMSE sense, it 
outperforms the conventional model-based methods as 
shown in [10]. Noting that different gain table parameters are 
optimized and used for different noise types, the overall 
performance improves over that of a fixed-noise suppression 
approach. 

B. Background noise environment detector  

The noise classification path is activated for frames 
which contain only noise. To determine if the incoming 
frame is noise only, a voice activity detector (VAD) using an 
adaptive threshold for subband power is used here. Subband 
power is computed using the wavelet coefficients which are 
already computed as part of the decomposition path, hence 
making the VAD computationally efficient.  

To characterize the noise frames for classification, a 26-
dimensional feature vector consisting of a combination of 
MFCCs (mel-frequency cepstral coefficients) with their first 
derivatives is utilized as it is found that such a feature vector 
provides high classification rates while not being 
computationally intensive. In our previous study [14], a 
support vector machine (SVM) classifier with a radial basis 
kernel was used. However, to perform multiclass noise 
classification, SVM becomes computationally very 
expensive and thus a Gaussian mixture model (GMM) with 
two Gaussian mixtures is employed here as it provides a 
balance between classification accuracy and computational 
complexity. The parameters of the GMM classifier are 
estimated using the k-means clustering and expectation 
maximization (EM) algorithms. 

III. REAL-TIME IMPLEMENTATION ON PDA PLATFORM 

 
The FDA-approved PDA platform consists of a 624 MHz 

clock rate ARM processor. The coding was done in C. 

 

 

 

 

 

 

 

 

 

 

 

Initially, the code was written in floating-point but it failed to 
run in real-time due to the processor being fixed-point. 
Hence, the code was rewritten in fixed-point using 32-bit 
word length in Q15 and Q24 formats depending on the 
required precision at different parts of the code. To further 
reduce the computational load, the envelope extraction and 
compression sections of the code were written using 16-bit 
word length as this sufficed the required precision for these 
sections. Table I reports the times required by different 
modules to process 11.6 ms duration frames (or 256 samples 
at 22050 Hz sampling rate). 

As can be seen, neither the floating-point nor the fixed-
point versions of the code could be run in real-time, i.e. the 
total time being greater than 11.6 ms of frame time. In what 
follows, the optimization steps taken to reduce the total 
processing time and thus to achieve the real-time 
implementation are mentioned:  

1- Look-up table (LUT) – The sections of the code 
consisting of exponential integral, dB to linear and linear to 
dB conversion were implemented as LUTs to reduce the 
computational load. For a 32-bit fixed-point implementation, 
having an entry for each possible input led to a very large 
LUT with 2

32
 entries, hence the number of entries in the table 

had to be reduced. For a non-linear function as shown in Fig. 
2(a), having table entries which were linearly spaced along 
the input range, marked with ‘+’ along the input output 
curve, led to large quantization errors. To improve the design 
of LUTs of such functions, a table with the same number of 
entries was used that was linearly spaced along the output as 
shown in Fig. 2(b). This way there were no more entries in 
the table in the region where the output was dynamically 
changing for a small change in the input compared to the 
region where the output was slowly changing with the input.  

However, since the key for the table entries was not 
linearly spaced, this added additional table search time for a 
given input. In our implementation, the LUT was divided 
into different regions where the input key was linearly 
spaced in each region; spacing in each region was made 
dependent on the dynamic nature of the output as shown in 
Fig. 2(c). Fig. 2 shows the error between the actual output 
and the output obtained by looking up the nearest entry in the 
LUT. The MSE for the three cases shown were 0.028, 0.004 
and 0.003, respectively. The LUT was constructed as 
illustrated in Fig. 2(c) for an exponential integral function 
with the input in Q15 having a maximum of 2

-15
 deviation 

from the actual value. This reduced the total required 
memory to only 8% as compared to the LUT which had an 
entry for all possible inputs. 

2- Search optimization- As mentioned above, in order to 
reduce the number of entries in the LUT and also maintain 
the accuracy, the LUT was designed in such a way that the 
key was not placed linearly along all possible input values. 
The LUT was divided into different regions where the input 
key to the table was linearly spaced along the input values, 
and different regions had different spacings between the 
keys. As a result, the LUT was arranged in a balanced tree 
structure with each branch corresponding to a different 
region with a different spacing. Such an arrangement made 
the search for an entry in the table possible with few binary 
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Figure 1.  Environment-adaptive noise suppression component added 

to    the FDA-approved PDA cochlear implant research platform.  
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operations on the fixed-point input. A 3-level tree structure 
was constructed for this LUT in order to compute the 
exponential integral; hence searching the table took only 3 
comparisons. 

3- Series expansion- There were multiple places where 
linear to dB scale conversion and other log computations 
were needed. For such computations, the LUTs were 
approximated using series expansion. The number of terms 
used in the expansion depended on the accuracy required and 
the actual input value. 

4- Memory management- Static memory allocations were 
used to avoid any dynamic memory allocation.  The 
arrangement of the LUTs along a binary tree reduced the 
requirement of a contiguous memory space as different 
regions of the tree could be stored separately. Allocation of a 
contiguous memory block for several frequently used 
constants was made to avoid pages being missed during 
memory accesses.  

 

TABLE I.  TIMING PROFILE IN MS OF THE ENTIRE CI SPEECH 

PROCESSING PIPELINE FOR 11.6 MS FRAMES. 

 Total 

Time 
A B C D 

Floating- 

Point 
95.00 34.36 34.62 34.05 0.08 

Fixed-Point 

(Non-

optimized) 28.33 1.50 15.21 11.17 0.07 

Fixed-Point 

(Optimized) 

7.77 1.32 2.55 2.41 0.06 

A: Recursive WPT decomposition, B: Speech enhancement, 

C: Noise detection, D: Channel envelope computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5- Reducing classifier frame rate- The rate at which the 
classifier was activated was reduced by alternating the ‘noise 
only’ frames. This reduction in classifier frame rate delayed 
the detection of a change in the noise environment by one 
frame (11.6 ms) while not causing any delay to the 
decomposition path. 

Table I shows the processing times of different modules 
using different implementations of the complete CI system 
which include wavelet decomposition, noise suppression, 
channel envelope computation, lowpass filtering, envelope 
compression, VAD, feature extraction, and classification. As 
can be seen from row 3, after incorporating all the 
optimizations discussed above, the real-time implementation 
on the PDA platform was made possible, i.e. processing of 
11.6 ms frames took only 7.7 ms. 

IV. REAL-TIME SPEECH ENHANCEMENT RESULTS  

 
The PDA was taken to four different most commonly 

encountered noise environments namely street, car, 
restaurant and mall to capture segments of noise for training. 
The recordings were collected using the BTE (Behind-The-
Ear) microphone as worn by CI patients. For each 
environment, 5 sample files of 1-minute long duration were 
collected. In every recording, the integrated (average) sound 
pressure levels (SPLs) for the run periods of 1 minute were 
noted as 75.8 dBA for street, 66.4 dBA for car, 71.2 dBA for 
restaurant and 67.8 dBA for mall noise environments. The 
two environments of restaurant and mall noise included 
babble. 

Two performance measures of classification rate and 
speech enhancement are reported here. The classifier was 
trained using 50% of the collected data, and the rest was 
used for testing, with no overlap between the training and 
testing samples. The average or overall correct classification 
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Figure 2.  Look-up table entries and error between actual output and 

LUT output; LUT designed such that table entries are spaced (a) 

linearly along input, (b) linearly along output, (c) linearly along input 

with different spacing in different regions. 
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rate was found to be 91.5% noting that the misclassifications 
were not disruptive to the enhancement process. That is to 
say when misclassifications occurred, the gain table of the 
environment with the highest similarity with the actual 
environment was used. 

To examine the adaptive noise suppression method, we 
used 20 sentences of approximately 2 seconds duration for 
training. Noisy speech files were created by adding the four 
noise types to the clean speech sentences at 9 different SNR 
levels. These noisy files were used to generate the optimized 
gain look-up table as discussed in section II-A. To evaluate 
how the trained gain table performed in suppressing noise, 
for each noise type, the noise files for testing and training 
were considered to be exclusive. The performance of each 
gain function was tested at 5 dB SNR and compared to the 
non-adaptive or fixed noise suppression approach of log-
MMSE algorithm [9]. Perceptual evaluation of speech 
quality (PESQ), an ITU-T recommended standardized 
objective quality measure [15], was used here to assess the 
performance of noise reduction algorithms in terms of 
quality. This measure gives a score between 0.5 and 4.5 with 
higher numbers representing better quality.  Fig. 3 illustrates 
the PESQ scores for the noisy and the speech enhanced 
outcomes using the fixed and adaptive suppression methods 
for the four noise types of street, car, restaurant and mall, 
averaged over 700 different speech sentences. As can be 
observed from this figure, higher (predicted) quality ratings 
were obtained after incorporating the above discussed 
adaptive noise-suppression techniques relative to the no-
noise suppression and fixed-noise suppression conditions.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

V. CONCLUSION 

This paper has presented the optimization steps taken in 
order to add a real-time noise suppression capability to the 
FDA-approved PDA research platform for cochlear implant 
studies. These steps have included fixed-point techniques, 
efficient look-up table design, search optimization, series 
expansion, memory management, and classification frame 
rate reduction. This added capability is expected to  benefit 
CI patients as the current  PDA research platform does not 
include any noise suppression component.  
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Figure 3.  PESQ quality scores obtained with no noise suppression, 

fixed -noise suppression, and adaptive-noise suppression  methods 

(scores on original noisy signals with no suppression are considered as 

baseline).  
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