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Abstract— We present an automated multiple-step tool to 

identify Rapid Eye Movements (REMs) in the polysomnogram, 

based on modeling expert criteria. It begins by identifying the 

polysomnogram segments compatible with REMs presence. On 

these segments, high-energy REMs are identified. Then, vicinity 

zones around those REMs are defined, and lesser-energy REMs 

are sought in these vicinities. This strategy has the advantage 

that it can detect lesser-energy REMs without increasing much 

the false positive detections. Signal processing, feature 

extraction, and fuzzy logic tools are used to achieve the goal. 

The tool was trained and validated on a database consisting of 

20 all-night polysomnogram recordings (160 hr) of healthy ten-

year-old children. Preliminary results on the validation set 

show 85.5% sensitivity and a false positive rate of 16.2%. Our 

tool works on complete polysomnogram recordings, without the 

need of preprocessing, prior knowledge of the hypnogram, or 

noise-free segments selection. 

 

I. INTRODUCTION 

Although the functions of sleep in human physiology are 
not completely known, there is abundant evidence supporting 
the idea that it plays a role in brain plasticity and memory 
consolidation [1]-[3]. Two different states have been 
defined: REM sleep (REMS) and non-REM sleep (NREMS) 
[4],[5]. These states are identified by the temporal 
concordance between EEG, electrooculographic (EOG) and 
electromyographic (EMG) patterns. 

REMS is characterized by low-amplitude activity in the 
EEG, predominantly in the theta band (4-7 Hz) [6], centrally 
induced muscle atony [7], and the presence of rapid eye 
movements (REMs) in the EOG signal, these latter being the 
hallmark of the onset of REMS [4]. REMS has been 
associated with the development of procedural memory [8]. 

 

.
 

 

 

Figure 1: Examples of REMs in an EOG recording segment. The length of 
the horizontal line indicates the duration of each event. REMs are abrupt 
changes in the EOG signal, and they can occur in bursts (a) or as an 
isolated event (b). 

REMs   are    abrupt    changes    in    the    EOG     signal 
corresponding to spontaneous movements of the eyeballs 
during sleep. REMs usually occur as bursts [9] (fig. 1-a), but 
isolated events happen as well (fig. 1-b). 

Visual detection of sleep patterns, including REMs, is a 
manual, time-consuming effort requiring a considerable level 
of expertise. In addition, it presents relevant intra- and inter-
expert variability in detection [10],[11]. Automated detection 
of sleep patterns is a powerful tool to reduce the expert time 
devoted to this process and to standardize its outcome. 

Different research groups have worked on automated 
REMs detection. Agarwal et al. [12] developed a method 
based on feature extraction and context information to detect 
REMs in ten healthy adult EOG recordings. The results in 
the testing data set showed 67.2% sensitivity (detection rate) 
and 24.5% false-positive (FP) rate. Värri et al. [13] 
compared five REMs detection algorithms on four healthy 
adult EOG recordings. Method A used EOG filtering and 
morphological criteria; method B used EOG filtering and 
activation and relaxation slopes of the signal; method C 
applied EOG filtering, context REMs feasibility and 
amplitude thresholds; method D applied cross-correlation 
between EOG channels and amplitude thresholds; and 
method E calculated the derivative of the EOG signal and 
used amplitude criteria. The best results were obtained 
applying method A: 90.0% sensitivity and a FP rate of 
35.6%, and the poorest applying method B: 30.0% 
sensitivity and 49.3% FP rate. Hatzilabrou et al. [14] 
compared three methods in newborns: Method A applied 
amplitude and duration criteria; method B is an extension of 
method A, including the activation slope and correlation 
between EOG channels; method C used templates

Automated Detection of Rapid Eye Movements in Children 

Claudio M. Held*, Senior Member, IEEE, Javier Causa,  Leonardo Causa, Pablo A. Estévez, Senior 

Member, IEEE, Claudio A. Perez, Senior Member, IEEE, Marcelo Garrido, Rodrigo Chamorro, 

Cecilia Algarín, and Patricio Peirano 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

2267978-1-4577-1787-1/12/$26.00 ©2012 IEEE



representing typical REM shapes and autocorrelation with 
the EOG signal. The results on the testing data set showed 
69.4% sensitivity for method B and 84.1% sensitivity for 
method C. Tsuji et al. [15] used Haar discrete wavelet 
transform on the EOG signal, obtaining 96.0% sensitivity 
and 22.0% FP rate. Barschdorff et al. [16] used EOG 
filtering and feature extraction, and neural networks, to 
detect REMs in four healthy children EOG recordings. The 
results on the testing data set showed 86.0% of correct 
detections. 

The main objective of this work is to develop a novel 
tool for automated REMs detection based on modeling 
expert criteria. Additionally, we are building a significant 
annotated REMs database of all-night polysomnographic 
recordings of children for proper validation. In this paper we 
present preliminary results. 

II. METHODS 

A. Recordings and database 

The database consists of 20 all-night polysomnogram 
recordings of healthy ten-year-old children, acquired at the 
Sleep Laboratory of the Instituto de Nutrición y Tecnología 
de los Alimentos (INTA), Universidad de Chile. It was 
divided in 15 recordings (total: 120 hr) for the training 
dataset (TS), and 5 recordings (40 hr) for the validation 
dataset (VS). 

Sleep experts at the INTA Sleep Laboratory analyzed 
and marked the beginning and the end of the REM events 
using the visualization and marking tools of the Sleep-
Analyzer. The Sleep-Analyzer is a tool, developed on 
MATLAB, to visualize and analyze polysomnographic 
signals, sleep patterns and hypnograms, applying signal 
processing tools, filters, etc.. The interactive graphic user 
interface allows to display, mark and review a selection of 
signals. This tool is developed by the Biomedical 
Engineering Laboratory of the Electrical Engineering 
Department, Universidad de Chile. 

B. REMs detection system 

Our automated detection system is based on expert 
procedures followed to detect REMs. They search for REMs 
in EOG recording zones which fulfill certain context 
conditions. Within these zones, they usually search for low-
amplitude REMs in the vicinity of high-amplitude, well-
defined REMs. The detection system consists of four 
modules (see Fig.2). Module I identifies the polysomnogram 
segments compatible with REMs presence. On those 
segments, module II searches for REMs candidates with 
amplitudes of 35 µV or more (REM35), characterized by an 
artifact-free baseline and a steep activation slope, among 
others. Module III defines zones around REM35 to search for 
smaller REMs events, with amplitudes as low as 15 μV. 
Module IV identifies the smaller REM15 and generates the 
final REMs detection (start and end positions of each event). 
The thresholds for REMs detection, including the amplitudes 
of 35 µV and 15 μV for our 2-step detection, were 
empirically determined using the TS. 

 

Figure 2: Block diagram of the proposed REMs detection system. The 

system is based on modeling sleep expert criteria to identify REMs events. 

B.1 Module I: Search for recording zones with REMs 

compatible conditions 

Module I seeks to identify recording zones with conditions 

compatible with REMs presence, which involves analyzing 

other polysomnogram channels. FFT is applied on the EEG 

signal using a 2.56-s moving Hamming window to determine 

the spectral power in the delta ([0,5; 3]Hz), theta ([3, 7]Hz), 

sigma ([10; 16]Hz), and “high frequency” ([30; 60]Hz) 

bands. The average power (AP) for 30-s EEG epochs 

obtained for each band: APD (delta), APT (theta), APS 

(sigma), APHF (high frequency) bands, and fuzzy 

classification rules are used to identify REMs compatible 

zones. Fuzzy rules include looking for zones with low APD 

(high APD is related to Slow Wave Sleep), low APS (high 

APS is related to Sleep Spindles, characteristic of stage 2 

NREMS), high APT, (background activity characteristic of 

REMS), and low APHF (associated to contamination, noise, 

or wakefulness).  Figure 3 shows an example of the EEG 

analysis and the result of module I for a training data set 

recording. 

B.2 Module II: REM35 detection 

Module II focuses on the zones defined by module I to 
identify REM35. The EOG signal is filtered and the local 
minima and maxima are identified using sign changes in the 
slope of the signal, determined using linear regression on 
five consecutive samples. The signal amplitude of a REM 
candidate (REMC) is obtained considering the peak before 
and after the REMC (min-max-min or max-min-max). The 
consecutive peaks are identified by their amplitude-time 
coordinates (AL, tL), (AC, tC) and (AR, tR), the subindices 
standing for left, center and right, respectively. REMC with 
amplitude: 
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Figure 3: Example of the module I process. FFT is applied to obtain the 

moving average power for the: a) delta band ([0.5, 3] Hz), b) theta band ([3, 

7] Hz), c) sigma band ([10, 15] Hz), and d) high frequency band ([30, 60] 

Hz). e) Result of module I, i.e. the recording zones where to focus the 

detection of REM35. e) Hypnogram of the same recording (referential 

information). 

qualify for further analysis. Four other features are 
calculated: 

duration:  

activation slope:  

EOG RMS power:  

and body movement index:  

  

Classification rules are applied on these features to 
generate the module output, i.e. the detected REM35 start and 
end positions throughout the EOG signal. 

B.3 Module III: Definition of EOG zones to search for low 

amplitude REMs 

Sleep experts search for smaller amplitude REMs events 
in the vicinity of well-established ones. Module III emulates 
this procedure, which we observed tends to reduce the risk of 
confusing smaller REMs and EOG artifacts. Low-amplitude 
REMs (REM15) are sought only in a fuzzy vicinity of 
detected REM35, defined as: 

 

where  is the temporal distance from the center of the 
REM35 to time t of the recording. If there are overlapped 
zones, these are integrated as: 

.  

Figure 4 shows an example of the REM15-zone generation 
process. The membership degree to a REM15-zone is a value 
in the range [0, 1].  

B.4 Module IV: Final detection of REMs events 

Module IV detects all REMs with amplitudes as low as 
15 µV within the ranges set by module III, i.e. it includes the 
REM35 events previously detected: 

, 

see figure 4. It starts by applying the same procedure used to 
generate the REMC35 (module II), but modifying the 
amplitude threshold, according to the value of . For 

, the amplitude threshold is 15 µV. As the  
value diminishes, the amplitude threshold increases, reaching 
35 µV when : 

 

 
Figure 4: REM15 detection sequence: a) EOG signal including 3 REM35 

identified by module II, labeled 1, 2 and 3. b1, b2 y b3) fuzzy REM15-zones 

for REM15 search, defined by each REM35 previously detected; b4) 

integrated REM15-zone, created by merging the three previous zones. c) 

Superposition of the REM15 fuzzy search zones and the EOG signal; 

REM15 are only sought within the zones limits, and findings are marked. 

The features AREM, DREM, ASREM, RMSREM, BMIREM are 

calculated on the REMC15, using the algorithms described in 

module II. Two additional features are calculated: the 

correlation factor (CFREM), which correspond to the 

correlation between REMC15 and a prototype “ideal” REM 

event; and the EMG polysomnogram channel RMS power 

(RMSEMG). The variables characterizing each REMC15 are 

used as inputs to a decision tree [17] to obtain the final 

output of the system. 

II. RESULTS 

The system was trained and the parameters were adjusted 

using the TS. To measure the performance of the system we 

used the VS. The overall results for each dataset for 

continuous all-night sleep recordings are presented in Table 

I. 

III. DISCUSSION AND CONCLUSION 

For the VS the system shows sensitivity for continuous 
all-night sleep recordings of 88.9% and a FP rate of 16.2%.

 

 

2269



 

 

 

 

TABLE I. AUTOMATED REMS DETECTION RESULTS ON TRAINING AND VALIDATION DATASETS 

Marked by 

experts

Automated 

detection

Training 12403 12518 11212 1191 1306 88.9 12.6

Validation 5813 6015 5212 601 803 85.5 16.2

Sensitivity              

[% ]

False positive 

rate [% ]
Set

REM events Expert-system 

agreement in 

REM events (TP)

Marked, but not 

detected (FN)

Detected, but not 

marked (FP)

 

The results show a good performance of the detection tool. 
Further tests and improvements are programmed. Our 
detection approach has the advantage that it does not need 
preprocessing of the recordings, such as previous knowledge 
of the hypnogram, or selecting noise-free segments.  

Automated REMs pattern detectors are a relevant 

contribution to reduce expert observation time and 

standardize criteria among evaluators. T

sleep classification algorithms [18]-[21], 

[22]-[24]; and a visualization and analysis system for 

children polysomnographic recordings, integrating the 

developed tools, the Sleep-Analyzer. 
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