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Abstract —Current automatic sleep stage classification 
(ASSC) methods that rely on polysomnographic (PSG) 
signals suffer from inter-subject differences that make 
them unreliable in facing with new and different 
subjects. A novel adaptive sleep scoring method based on 
unsupervised domain adaptation, aiming to be robust to 
inter-subject variability, is proposed. We assume that the 
sleep quality variants follow a covariate shift model, 
where only the sleep features distribution change in the 
training and test phases. The maximum overlap discrete 
wavelet transform (MODWT) is applied to extract 
relevant features from EEG, EOG and EMG signals. A 
set of significant features are selected by minimum-
redundancy maximum-relevance (mRMR) which is a 
powerful feature selection method. Finally, an instance-
weighting method, namely the importance weighted 
kernel logistic regression (IWKLR) is applied for the 
purpose of obtaining adaptation in classification. The 
classification results using leave one out cross-validation 
(LOOCV), show that the proposed method performs at 
the state-of-the art in the field of ASSC.   

I. INTRODUCTION 

he development of automatic sleep stage classification 
(ASSC) and monitoring based on Rechtschaffen and 

Kales standard (R&K) [1] and the American Academy of 
Sleep Medicine (AASM) has consistently been an important 
research topic. ASSC is highly desirable, to save time and 
improve the agreement levels of sleep scoring versus the 
traditional scoring by experts. Most of the ASSC methods 
are based on electroencephalographic (EEG) records, 
sometimes in combination with electrooculographic (EOG) 
and electromyographic (EMG) records. They categorize 
sleep-wake cycle in awake, non rapid eye movement 
(NREM) and rapid eye movement (REM) sleep stages. 
NREM sleep is further divided into three stages: N1, N2 and 
N3 [2]. Current ASSC methods reported in scientific 
publications are based on classical supervised and 
unsupervised learning approaches like linear discriminate 
analysis (LDA), hidden markov model (HMM), fuzzy 
clustering or kernel methods such as artificial neural 
networks (ANN), and support vector machine (SVM) [3-10]. 
These ASSC methods that rely on PSG signals are 
inadequate to handle inter-subject variability. In these 
methods, it is implicitly assumed that existent kernel is 
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completely correct, and without any kernel error. Since sleep 
features may vary due to health problems like apnea, 
recording environment changes and subjects’ physical 
conditions, the training and test probability distributions are 
not necessarily the same in practice. Actually, probability 
distributions of training and test subjects are related to each 
other in some sense, and it can be learned something about 
test probability distribution via the training set. One of the 
assumptions is to consider a connection between train and 
test domains based on instance weighting for covariate shift 
[11]. Covariate shift methods, reweight training samples in 
the training domain to minimize the error of predictions and 
to match with a new test domain. These methods firstly, 
estimate density ratio from the test and training domains, 
then the estimated density ratio is used to resample the 
training samples, or to train with weighted examples [12]. 
An adaptive ASSC approach has been developed based on 
unsupervised domain adaptation. The main goal is to cope 
with variations between a new subject and training set, 
aiming to improve sleep stage classification in two 
applications: sleep/awake detection and multiclass sleep 
stage classification. In both cases the classification is based 
on six EEG, two EOG channels and one EMG channel by 
using temporal, parametric and time-frequency features. A 
set of significant transformed and normalized features are 
selected by a minimum-redundancy maximum-relevance 
(mRMR) algorithm [13]. To cope with the non-stationarity, 
a weighted version of kernel logistic regression (KLR) , 
known as importance weight kernel logistic regression 
(IWKLR), is used as classifier [14]. 

II. MATERIALS AND METHODOLOGY 

The proposed system is organized in various interoperating 
parts as described in the following.  

A. Data Collection 

Data from all-night PSG records, each with a duration 
around 8 hours (acquired by a SomnoStar Pro; Viasys 
SensorMedics), were provided by the Laboratory of Sleep 
from Hospital Centre of Coimbra. All EEG, EOG and EMG 
recordings were performed with a sampling rate of 200 Hz. 
The dataset comprises data from eight subjects, six males 
and two females with ages between 22 and 76 years old 
(mean = 50 years; STD = 19.05 years) acquired since year of 
2009 until 2011. In 87% of the subjects, sleep apnea events 
were reported. The international 10-20 standard electrode 
placement system was used for EEG recording. Six EEG, 
two EOG and one EMG channels were used in our 
evaluation: F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, and O2-
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A1, right EOG (R-EOG)-A1, left EOG (L-EOG)-A2 and 
chin EMG signal X1 for all the subjects. 

B. Structure of the Proposed Method 

After applying common preprocessing, such as a notch 
filter at 50 Hz, band-pass Butterworth filter with lower 
cutoff of 0.5 Hz and higher cutoff of 45 Hz, and segmenting 
the signals in 30 second epochs, some features are extracted 
using several methods in the time-frequency, temporal and 
frequency domain as will be described below. PSG signals 
are traditionally analyzed in the frequency domain, since 
each sleep stage is characterized by a specific pattern of 
frequency contents. Moreover, PSG signals are non-
stationary; therefore time-frequency transformations like 
wavelets are very useful. Due to superiority of the MODWT 
[10], [17], [18] versus discrete wavelet transform (DWT), a 
MODWT of depth 6 with Daubechies order four (db4) is 
applied to every 30 second epochs with a sampling rate of 
200 Hz. The frequency ranges are broken down within δ 
range (<4 Hz), θ range (4–8 Hz), α range (8–13 Hz) and β 
range (13–30 Hz). To represent the time-frequency 
distribution of the EEG, EOG and EMG signals, features 
such as energy [10], percent of energy [10], mean and 
standard deviation are extracted from each sub-band. 
Furthermore, relative spectral power [7], harmonic 
parameters [4], percentile 25, 50, 75 [7], and skewness [7], 
are extracted as the temporal and frequency based features. 
To reduce the influence of extreme values, the 
transformation ࢄ = log(ࢅ) [19], is carried out where Y 
denotes the original matrix of features, and ࢄ =൛ݔ௜௝; ݅ = 1,2, … ,ܰ	and		݆ = 1,2, …  ൟ (where N and Mܯ,
denote the number of subjects and the number of features, 
respectively), and to avoid features in greater numeric ranges 
dominating those in smaller numeric ranges, the transformed 
features, are normalized to the interval 0-1 [20]. 
Furthermore, a reduction in the dimension of the raw input 
variable is done by using the mRMR algorithm [13]. As 
illustrated in Figure 1, to handle the adaptive classification, 
covariate shift adaptation method is followed. Covariate 
shift is defined as a situation where the same 
observation	ݔ ∈ ܺ, (	ܺ	 denotes a set of observations), with 
the same conditional distribution Y, (where Y denotes class 
labels) are in training and test domains. However, the 
marginal distributions of x may be different in source and 
the target domains. Formally, it assumes that ௧ܲ௥(ܻ|ܺ = (ݔ = ௧ܲ௘(ܻ|ܺ = ݔ		for all	(ݔ ∈ ܺ, but ௧ܲ௥(ܺ) ≠௧ܲ௘(ܺ) [14]. At first glance, it may appear that covariate 
shift is not a problem in ASSC systems, because, we are 
only interested in	ܲ(ܻ|ܺ); and it assumes	 ௧ܲ௥(ܻ|ܺ) =௧ܲ௘(ܻ|ܺ); but there is one question, why would the classifier 
learned from the source domain does not perform well on 
the target domain, even if		 ௧ܲ௥(ܺ) ≠ ௧ܲ௘(ܺ). Shimodaira in 
[11] showed that this covariate shift becomes a problem 
when poorly specified models are used. In classification 
under covariate shift, the ratio ௧ܲ௘(ݔ, (ݕ ௧ܲ௥(ݔ, ⁄(ݕ  in the 
main equation of optimal model selection can be rewritten as 
follows [15]: ௧ܲ௘(ݔ, ,ݔ)௧ܲ௥	(ݕ (ݕ = ௧ܲ௘(ݕ)	௧ܲ௥(ݕ) 	 	 ௧ܲ௘(ݕ|ݔ)	௧ܲ௥(ݕ|ݔ) = ௧ܲ௘(ݕ)	௧ܲ௥(ݕ) 	.																	(1) 

Therefore, weighting each training instance by (1) could be 
useful. Actually, the influence of covariate shift can be 
asymptotically canceled by weighting the log-likelihood 
terms by accurately estimating the density ratio which is 
called the importance [16]: ܹ(ܺ) = ௧ܲ௘(ܺ)	௧ܲ௥(ܺ) 																																					(2)	 
where ௧ܲ௘(ܺ) and ௧ܲ௥(ܺ) are test and training input 
densities, respectively. The importance weight ܹ(ܺ) is 
unknown in practice, and needs to be estimated from data. A 
naïve approach consists on estimating the training and test 
densities, separately from training and test input samples, 
and then estimating the importance weight by taking the 
ratio of the estimated densities. However, direct density 
estimation is known to be a hard problem, particularly in 
high-dimensional cases [16]. Therefore, some other 
reweighting approaches can be used such as minimizing 
classification error of ௧ܲ௥(ܺ) versus	 ௧ܲ௘(ܺ), minimizing the 
Maximum Mean Discrepancy (MMD) between ௧ܲ௥(ܺ)	and	 ௧ܲ௘(ܺ), and minimizing Kullback-Leibler (KL) 
divergence between ௧ܲ௥(ܺ) and ௧ܲ௘(ܺ) [16]. The Kullback-
Leibler importance estimation procedure (KLIEP) [16] was 
used once it integrates a built-in model selection procedure. 
This method allows us to directly learn the importance 
weight function, without going through the density 
estimation. Due to highly effects of the Gaussian width of 
KLIEP over the performance of importance weight 
estimation, the best value is calculated by cross validation 
[14]. 

C. Importance Weight Kernel Logistic Regression 

Kernel logistic regression (KLR) is a kernelized variant of 
logistic regression. In KLR, the input vector is mapped to a 
high-dimensional space (feature space) and the logistic 
regression problem is solved in the feature space; the 
similarity in feature space can be implicitly computed via the 
kernel trick. The kernel trick allows converting a linear 
algorithm into a non-linear, keeping the computational 
simplicity. As mentioned, using importance sampling, the 
expectation over training samples is weighted according to 
their importance in the test distribution. Thus, by applying 
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TABLE I. SELECTED FEATURES USING MRMR. ALL FEATURES ARE 

EXTRACTED FROM SIX EEG, TWO EOG AND ONE EMG CHANNELS  
Features MODWT Harmonics 

Relative 
Power 

Percentile Skewness 

Existent 16 24 45 120 180 

Selected 6 16 40 50 64 
 

TABLE II. EFFECT OF EMG AND EOG SIGNALS  
ON THE SLEEP SCORING 

Sleep 
Stages 

Sensitivity 
With EMG  

&EOG 
Without EMG 

&withEOG 
Without EOG 
&With EMG 

W 91.63 90.22 92.26 

S1 47.73 49.31 42.91 

S2 74.93 76.17 71.77 

S3 85.11 83.89 75.65 

REM 82.40 75.38 75.91 

 
importance sampling to KLR, a weighted version of KLR, 
namely IWKLR is obtained [14].  

Moreover, the IWKLR model contains two tuning 
parameters: the kernel width and the regularization 
parameter. Usually these tuning parameters are optimized 
based on cross validation. However, ordinary cross 
validation is no longer unbiased due to covariate shift; 
therefore, is not reliable as a model selection method. To 
cope with this problem, importance weighted cross 
validation (IWCV) [16] is used for unbiased model 
selection.  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of the proposed algorithm was assessed 
using the eight subjects’ dataset, mentioned in section II.A. 
In our experiments, a fourth order Daubechies with 
MODWT decomposition was adopted. KLR, IWKLR 
algorithms [14], and Libsvm toolbox [21], were used in the 
classification phase. For KLR and IWKLR, Gaussian kernel 
width 0.34, and regularization parameter 0.01 were used, 
and for SVM, the sigmoid kernel degree and C parameters 
were set to 0.13 and 1.25 respectively, as they produced the 
best observed results. The classification accuracy was 
determined using leave-one subject-out cross-validation 
(LOOCV). 

The extracted feature sets and corresponding selected 
features, using mRMR method, are presented in Table I. A 
total of 385 (45 per each channel) features were extracted for 
each subject. The transformed and normalized feature matrix 
is fed into the feature selector. The total number of selected 
features by mRMR method was 159 for sleep/wake 
classification, and 176 for multiclass classification which 
has provided the best average accuracy when applying a grid 
search. As illustrated in Table I, the most relevant features 
are extracted from MODWT decomposition (64 selected 
features), Harmonic parameters (50), and relative power (40) 
and the least effective ones is Skewness (6 selected 
features). Relative power showed the best ratio of selected 
by extracted features. Some improvements were  verified by 
using features extracted from EOG and EMG signals. As 
shown in Table II, by including the EOG signals almost 10% 
and 8% improvements in the classification of N3 and REM- 

TABLE III. STATISTICAL ANALYSIS RESULT  
OF BINARY CLASSIFICATION 

Sleep 
Stages 

Sensitivity 
SVM KLR IWKLR 

Awake 89.27 75.45 73.75 
Sleep 95.34 96.16 96.55 

 
TABLE IV. STATISTICAL ANALYSIS RESULT OF  

MULTICLASS CLASSIFICATION 
Sleep 
Stages 

Sensitivity Specificity 

SVM KLR IWKLR SVM KLR IWKLR 

W 86.92 72.07 74.75 94.61 95.79 96.07 

S1 44.41 44.19 41.06 95.50 93.99 94.82 

S2 74.13 74.04 73.85 92.16 88.68 88.98 

S3 88.33 87.73 89.31 96.16 95.25 94.19 

REM 77.55 75.61 72.82 94.51 92.51 93.20 

 
stages were verified, respectively; which is due to 
remarkably differences of ocular movements in these two 
stages. The use of the EMG signal improved the 
classification accuracy of REM and awake stages around 8% 
and 4%, respectively. In these two stages, the EEG activity 
is almost similar, but the EMG activity is completely 
different (high and low muscle tone, respectively). 
Sensitivity and specificity results of the proposed ASSC 
algorithm are shown in Tables III and IV. The results were 
obtained stage by stage using three different classification 
methods. For the sleep/awake detection case, as shown in 
Table III,  SVM gave a better result in detecting the awake 
stage (89.29%) in comparison with KLR (75.45%) and 
IWKLR (73.75%).  

 Table IV gives a detailed comparison of sensitivity and 
specificity for the three analyzed classifiers: IWKRL, KLR, 
and SVM. The sensitivity value of awake stage is the most 
significant difference between these methods; where the 
sensitivity of using SVM (86.9%) is almost 12% and 15% 
better than the adaptive method using IWKLR (74.7%) and 
KLR (72.0%), respectively. It means that SVM-based 
method has a better ability to detect the awake stage. 
Furthermore, for the other sleep stages, the sensitivity and 
specificity values for the different methods were almost 
similar. 

As shown in Figure 2, the average accuracies of IWKLR 
in multiclass and sleep/awake applications are better than 
KLR, which confirm that, adaptation based on importance 
weighting can improve the accuracies of ASSC. On the other 
hand, in more than 50% of the subjects, the average 
accuracies of the adaptive method and SVM-based method 
are almost similar, which is due to the model adaptation of 
IWKLR. In multiclass classification, the adaptive method 
based on IWKLR shows similar performance in N1, N2, N3 
and REM stages, and in sleep/awake discrimination a better 
performance was observed in detecting the sleep stage. This 
experiment indicates that the inter-subject variation of PSG 
signals has higher expression in sleep stage, and detection of 
the sleep stages namely N1, N2, N3 and REM, had the 
highest effect in reducing the subject-independent 
performance. Although average accuracies of IWKLR and 
SVM are almost similar, the SVM-based method showed a  
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Figure 2. Accuracy results of binary and multiclass classification methods.

larger impact on the accuracy than the adaptive approach. 
Therefore, in practice, this method, for the different subjects, 
indicated a less balanced response than SVM. It could be 
due to negative transfer and weakness of KLR method. 

The Cohen’s Kappa (k) values varied from 0.65 for 
multiclass classification in IWKLR approach to 0.85 for 
binary classification in SVM-based method, which 
represents substantial and almost perfect concordance.    

IV. CONCLUSION AND FUTURE WORK 

An adaptive sleep scoring method, based on unsupervised 
domain-adaptation, was proposed. To determine the validity 
of ASSC under covariate shift adaptation, IWKLR which is 
an instance of unsupervised domain adaptation methods was 
compared with KLR and SVM. For this purpose, several 
feature extraction methods have been applied. Features with 
higher positive impact in classification accuracy were the 
MODWT decomposition, harmonic parameters and relative 
power. Transformation and normalization in the feature 
domain played an important role in the remarkably 
improvement of classification accuracy. The integration of 
EOG and EMG channels indicated an improvement in 
classification, mainly for REM stage. The KLR-based 
adaptive approaches showed promising results in the 
multiclass sleep stage classification, namely with 
sensitivities average around 70%, with maximum of 89.31% 
for N3 stage and with minimum sensitivity of 44.19% for 
classification of N1 stage. However, it needs to be optimized 
in order to provide better results, especially as regards the 
classification of the awake state. In sleep/awake application, 
for detecting awake stage, the result of adaptive method 
(73.75%) was worse than the SVM-based method (89.27%). 
However, adaptive method indicated a better result (96.55%) 
in comparison to SVM (95.34%), in classifying the sleep 
stage. As a future work, the proposed adaptive method has to 
be validated in a larger dataset. Moreover, due to the 
observed quality of SVM, we are planning to investigate on 
SVM-based adaptive approaches aiming to improve ASSC 
results. 
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