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Abstract— Automatic sleep staging from convenient and un-
obtrusive sensors has received considerable attention lately
because this can enable a large range of potential appli-
cations in the clinical and consumer fields. In this paper
the focus is on achieving non-REM (NREM) sleep staging
from ocular electrodes. From these signals, specific patterns
related to sleep such as slow eye movements, K-complexes,
eye blinks, and spectral features are estimated. Although such
patterns are characteristic of the Electroencephalogram, they
can also be visible to a lesser extent on signals from ocular
electrodes. Automatic sleep staging was implemented using two
approaches: i) based on a state-machine and ii) using a neural
network. The first one relied on the recommendations of the
American Academy of Sleep Medicine, and the second one used
a multilayer perceptron which was trained on manually sleep-
staged data. Results were obtained on the data of five volunteers
who participated in a nap experiment. Manual sleep staging of
this data, performed by an expert, was used as reference. Five
stages were considered, namely wake with eyes open, wake with
eyes closed, and sleep stages N1, N2, and N3. The results were
characterized in terms of confusion matrices from which the
Cohen’s κ coefficients were estimated. The values of κ for both
the state-machine and neural-network based automatic sleep
staging approaches were 0.79 and 0.59 respectively. Thus, the
state-machine based approach shows a very good agreement
with manual staging of sleep-data.

I. INTRODUCTION

Sleep is understood as a reversible state of unconscious-
ness, characterized by a decrease of activity and alertness.
While some controversy exists about the precise role of sleep,
there is no doubt that sleep, by changing so many aspects of
physiology and behavior, affects the vast majority of body
functions including: immune function, hormonal regulation,
metabolism, and thermoregulation [1].

Two distinct types of sleep occur in mammals: rapid eye
movement (REM) sleep, and non–REM sleep [2]. Compared
to the low voltage, high frequency patterns appearing in
the awake electroencephalogram (EEG), non–REM (NREM)
sleep is associated with a synchronized EEG pattern in which
specific electrographic events take place. These events are
sleep spindles, K-complexes, and high-voltage slow wave
activity (SWA) within the delta frequency band (between
0.5 and 4.0 Hz) that can be recorded over the entire cortical
surface [3].

In humans, NREM is sub-divided into stages 2 and 3-4
(presently named N3) depending on the proportions of each
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of these electrographic events [4]. During REM sleep, the
EEG exhibits an activated pattern similar to that observed
during wakefulness. REM sleep is distinguished from wake-
fulness, primarily by reduced responsiveness and muscle
atonia [2].

Sleep is traditionally monitored using a set of simulta-
neously recorded electro-physiological signals (polysomnog-
raphy a.k.a. PSG) which includes EEG, electro-oculogram
(EOG), electromyogram (EMG), and electrocardiogram
(ECG) recordings [5]. Visual sleep scoring of a full night
recording is a rather time consuming task. This and the
limitations of classical sleep scoring rules (the so called
R&K rules [6]) in characterizing certain pathologies has
motivated the emergence of computer-based automatic sleep
scoring [5].

From the perspective of consumer applications of sleep
monitoring, the use of full PSG to characterize sleep is
unpractical. In this paper, we explore the possibility of using
electrodes located around the eyes (ocular electrodes) to
characterize the stages of NREM sleep. The use of ocular
electrodes is motivated by a prospective application involving
a sleeping mask with embedded electrodes. In view of a nap
application, the focus of this paper is on NREM sleep.

From ocular electrodes one can extract information about
eye blinks and eye movements. Slow eye movements are
particularity relevant to identify the wake to sleep transition.
In addition, EEG pattern characteristic of NREM sleep such
as K-complexes spindles, and slow wave activity can be ob-
served in the signal captured through ocular electrodes. This
paper presents two methods for automatic sleep staging using
EOG signals. The first method is based on a state-machine
that implements sleep staging rules based on the American
Academy of Sleep Medicine (AASM) standard [4]. The
second method relies on the use of Neural Networks.

This paper is organized as follows. Section II presents
the experimental design, data acquisition protocols, and the
algorithms used in this paper for signal analysis (Section II-
B) as well as automatic sleep staging (Section II-C). Sec-
tion III presents the results and discussion. The conclusions
are presented in Section IV.

II. METHODS

A. Data acquisition

Five volunteers (all males, Age: 27.6 ± 3.8) participated
in a nap pilot experiment in which they were asked to sleep
for at least 30 minutes but no longer than 90 minutes. The
participants entered a quiet and dim-lighted room at 14:00
and could remain there (asleep or not) until 17:00. The five
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participants in this experiment were selected out of a pool
of volunteers on the basis of their willingness and ability to
take a nap during daytime.

The signals at EEG standard locations C4 and A1, four
ocular signals (1 cm below and above the left outer canthus,
and 1 cm below and above the right outer canthus), and chin
EMG signals (according to the standard in [4]) were recorded
using a BIOSEMI Active-Two system [7] at a sampling
frequency of 2048 Hz.

For the purposes of eye-blink detection (see Section II-
B.1) we refer to as vertical signal, the signal resulting from
subtracting the lower from the upper ocular signal of the left
eye (the left eye signals were arbitrarily chosen for eye blink
detection).

We refer to as left ocular channel (LOC) the signal
recorded at the lower left outer canthus referenced to A1.
In addition, we refer to as right ocular channel (ROC) the
signal recorded at the upper right outer canthus referenced
to A1.

Visual scoring of the sleep stages was done, by an
experienced sleep scorer, on the basis of 30-second long
epochs using the EEG channel C4-A1, the EOG signals
LOC and ROC, and the chin EMG signal. Although these
recordings did not included all signals recommended for
PSG recordings, they allow for a sufficiently accurate manual
scoring of NREM and REM stages.

B. Data Processing

Prior to the processing and feature extraction steps, the
recorded signals were preprocessed by applying a notch filter
at 50 Hz to remove the power-line noise, followed by a sub-
sampling step at 128 Hz.

Because of their relevance for sleep, eye blinks, slow eye
movements, and K-complexes are detected in the signals.
In addition, spectral features are also extracted on a per-
epoch based. The role of these features in sleep staging is
summarized in Table I.

1) Eye Blink Detection: The presence of eye blinks is
indicative of wakefulness. The detection of eye blinks in this
paper follows the implementation in [8] where the processing
of the vertical signal essentially consists of two steps. The
first step involves applying a non-linear 10-sample long
median filter to reject outliers followed by a FIR band-pass
filter in the frequency range from 1.5 to 8 Hz. The second
step consists in squaring each sample of the signal resulting
from the first step, smoothing the result through a running
average filter, and applying a threshold to detect the blinks.
An illustration of the result of this process is presented in
Fig. 1.

2) Slow Eye Movement Detection: Slow eye movements
(SEMs) are low frequency (mainly 0.2 to 0.6 Hz) rolling,
horizontal, bidirectional and conjugate movements of the
eyes. They are a phenomenon typical of the wake-sleep
transition [9]. SEM activity starts before the onset of stage 1
sleep, continues through stage 1 then declines progressively
during the first minutes of stage 2, completely disappearing
when spindles and K-complexes begin [10].

Fig. 1. Detected eye blinks (marked by the stars) using the procedure
in [8].

Fig. 2. LOC and ROC signals during SEMs.

Examples of SEMs are depicted in Fig. 2, where the
corresponding ROC and LOC signals are conjugate, i.e. have
opposite phase. In this particular example, alpha oscillations
(8-12 Hz) superpose to the SEMs. Alpha is typical of the
wake state and the SEMs indicate the wake-sleep transition.

An estimation of SEM activity for each epoch is extracted
based on the difference between the cross-correlations be-
tween the signals LOC and ROC for the band from 1 to 6
Hz and the band from 0.5 to 6 Hz.

3) K-complex detection: The K-complex (KC) is a major
grapho-element of the sleep EEG. The K-complex mani-
fests as a well-delineated negative sharp wave immediately
followed by a positive component standing out from the
background EEG, lasting for longer than 500 milliseconds.
The KC amplitude is usually maximal when recorded using
frontal derivations [4].

It is accepted that the KC (also called vertex wave) is
a reliable sign for advanced drowsiness, becoming more
frequent with the deepening of sleep [11]. The K-Complex
detection procedure in this paper is done as follows:

• Band pass filtering in the 0.5 to 3 Hz,
• applying a smoothing moving average filter,
• finding the negative and positive peaks of the signal,
• and checking for the amplitude threshold of a K-

complex (75µV peak-to-peak).
An example of a detected K-Complex in the LOC is shown

in Fig. 3.
4) Spectral feature estimation: Activity in the following

frequency bands is relevant for sleep scoring [4]: i) delta
(δ) band (0.5-4 Hz) which is particularly prominent in N3,
ii) theta (θ) band (4-7 Hz) which is usually seen during
drowsiness, light sleep and REM sleep, iii) alpha (α) band
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Fig. 3. Detected K-complex in the LOC.

(8-12 Hz) which is typical of the awake (with eyes closed)
state, iv) the sigma (σ) band (11-15 Hz) which corresponds
to sleep spindles that are characteristic of N2, and iv) the beta
(β) band (15-30 Hz) characteristic of the awake (with eyes
open) state. Although these bands are primarily considered
for EEG analysis, they are also visible, though to a lesser
extent, in EOG recordings.

In addition to the per-epoch estimation of the absolute
power in the above mentioned frequency bands, the power
percentage of each band in a given epoch was also estimated.
The percentage estimation consisted in applying first a band-
pass filter in the 0.5- 30 Hz band, analyzing the 30-second
long epoch into one-second long segments (osl-segment)
with 0.5 seconds overlap, fitting an autoregressive (AR)
model [12] with order 15 to each osl-segment, estimating the
power spectral density from the AR model, and identifying
the frequency band in which the maximum power occurs.
The power percentage of a given band in an epoch is then
equal to the number of times in which the (per osl-segment)
maximum power occurred in that band divided by the total
number of osl-segments in the epoch (i.e. 59).

We refer to the δ, θ, and α power percentages as δ%, θ%,
and α% respectively. The absolute power in each band is
referenced by the corresponding Greek letter.

C. Automatic Sleep Staging

For the purpose of a consumer application, this paper
focusses on five stages, namely wake with eyes open (WO),
wake with eyes closed (WC), and sleep stages (N1, N2, and
N3) as defined by the standard [4]. Automatic staging is
performed on a per-epoch basis. Two types of approaches
were tested, the first one implements a state machine while
the second one relies on a neural network.

1) State machine based: In accordance with the standard
rules for sleep scoring [4], a state machine based scoring
algorithm was devised in which the next epoch estimated
stage depends on the current stage (second row from the top
in Table I) in accordance with the conditions specified in
Table I.

2) Neural network based: To use a neural network (NN)
based classifier, features were extracted from an epoch and
from both ocular channels (LOC and ROC). The following
features were used: 1) δ%, 2) θ%, 3) α%, 4) β%, 5) the ratio
(α+β)/(θ+ δ) (which is associated with sleep depth [13]),
6) the scoring result of the previous epoch, 7) to 10) ratios

TABLE I
SLEEP-STAGE TRANSITION TABLE

Current stage
WO WC N1 N2 N3

α% ≥ 50% WC WC WC WC WC
α% < 50% N1 N1
SEMs are present N1 N1 N1 N1
Eye blinks are
present

WO WO WO WO WO

Sleep spindles
are present

N2 N2 N2

K-complexes are
present

N2 N2 N3

Slow wave activ-
ity (δ% ≥ 50%)

N3

δ% < 50% N2
δ%+θ% > 20% N1

between the δ%, θ%, α%, and β% in the current epoch to the
power percentages in the previous epoch. This resulted in a
feature vector comprising 20 features (10 per ocular channel
LOC and ROC).

An NN with one hidden layer was selected for this
approach. The NN had then, 20 units in the input layer, 10
units in the hidden layer, and five units in the output layer.
This approach was evaluated under the leave-one-participant-
out modality in the sense that the data of 4 participants in the
experiment was used to to train the NN, and the data of the
fifth participant was used to evaluate the staging accuracy
against the hypnogram. Thus, five runs could be executed.

III. RESULTS AND DISCUSSION

The sleep staging accuracy of both approaches, namely
state machine and NN based was assessed from the confusion
matrix and the Cohen’s κ coefficient [14]. The confusion
matrices (see Table II) were estimated by aggregating the
data of all participants in the experiment.

A total of 673 epochs from all five participants were
manually and automatically (using the two approaches in
Section II-C) staged. The number of epochs corresponding
to WO, WC, N1, N2, and N3 were 52, 81, 122, 259, and 159
respectively. The confusion matrices clearly show the superi-
ority of the state-machine based approach for automatic sleep
staging. The WO state can be recognized perfectly using the
criteria from Table I. Interestingly N3 appears to be better
identified using the NN-based approach. This is a motivation
for the implementation of hybrid solutions combining the
physiological knowledge summarized in Table I and machine
learning algorithms.

In addition to the confusion matrices, the κ coefficient was
also estimated because this provides a more robust estimate
of the automatic staging performance as compared to the
simple agreement percentage [14]. The κ estimates can be
obtained from the confusion matrix using:

κ =
N

∑5
i=1 xii −

∑5
i=1 xi,:x:,i

N2 −
∑5

i=1 xi,:x:,i

, (1)

where N is equal to 673, xii is the i-th diagonal term of the
confusion matrix, xi,: is the sum of the elements on the i-th
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TABLE II
CONFUSION MATRIX OF THE STATE MACHINE BASED SLEEP STAGING

Predicted stage
Actual stage ↓ WO WC N1 N2 N3
WO 52 0 0 0 0
WC 0 73 8 0 0
N1 0 4 101 17 0
N2 0 2 7 227 23
N3 0 0 0 45 114

TABLE III
CONFUSION MATRIX OF THE NN BASED SLEEP STAGING

Predicted stage
Actual stage ↓ WO WC N1 N2 N3
WO 30 7 8 1 6
WC 11 30 34 6 0
N1 0 14 81 26 1
N2 4 0 32 192 31
N3 0 0 1 23 135

row, and x:,i is the sum of the elements on the i-th column.
It is considered that a value of κ in the 0.40 to 0.60

(resp. 0.60 to 0.80) interval can be interpreted as a moderate
(resp. good) performance [15]. The values of κ for the
state-machine and NN confusion matrices are 0.79 and 0.59
respectively. This confirms the superiority of the method
based on the state-machine. This is due to the fact that the
state machine approach incorporates knowledge (endorsed by
the AASM [4]) that is normally utilized by a human sleep
scorer. An illustration of the good agreement between the
state-machine based sleep stating and the manual scoring
(referred to as hypnogram) is presented in Fig. 4.

Fig. 4. Hypnogram versus state-machine based automatic sleep staging for
participant S3.

IV. CONCLUSIONS

In this paper, it has been shown that EOG signals can
be used for automatic sleep staging. The motivation behind
the use of EOG is of practical nature in view of a potential
consumer application. The advantage of using EOG only as
opposed to full PSG recordings is evident given the latter’s
cumbersome procedures.

To achieve automatic sleep stage classification, two
methods were tested based on a state-machine and on a
neural-network based implementation respectively. The state-
machine approach implemented rules for sleep staging as
recommended by the AASM standard. Thus, it was necessary
to implement the automatic detection of particular patterns

in the signal that characterize sleep such as: slow eye
movements, eye blinks, K-complexes, spindles, and spectral
features. Although most of these patterns were defined on the
basis of the EEG, they are also visible (to a lesser extent) in
the EOG. The neural-network based approach extracted ten
features for the LOC and ROC and combined them into a
feature vector. A multilayer perceptron was then trained on
a leave-one-out-participant modality.

The results obtained in this paper as characterized by the
well known κ coefficient show the superiority of the state-
machine based approach over the neural-network based one.
It is important to mention that the κ coefficient for the state-
machine based approach was equal to 0.79. This constitutes a
very promising result which shows the effectiveness of using
EOG for automatic sleep staging.
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