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Abstract² The aim of this study was the optimization of 

Time-Variant Autoregressive Models (TVAM) for tracking 

REM - non REM transitions during sleep, through the analysis 

of spectral indexes extracted from tachograms. A first 

improvement of TVAM was achieved by choosing the best 

typology of forgetting factor in the analysis of a tachogram 

obtained during a sitting-to-standing test; then, a method for 

improving robustness of AR recursive identification with 

respect to outliers was selected by analyzing a tachogram with 

an ectopic beat. A variable forgetting factor according to the 

Fortescue method and a specific condition on the prediction 

error for recursive AR identification gave the best 

performances. The optimized TVAM was then employed in the 

analysis of tachograms derived from ECGs recorded during a 

whole night, through a sensorized T-shirt, from 9 healthy 

subjects. The spectral indexes (power of tachogram in the LF 

and HF bands, LF/HF ratio and the absolute value of the 

spectrum pole in the HF band) were computed from the 

estimated AR parameters on a beat-to-beat basis. A two groups 

T-test aimed at comparing values assumed by each spectral 

index in REM and non-REM sleep epochs was performed. 

Significant statistical differences (p-value < 0.05) were found in 

three of the four spectral indexes computed. In conclusion, the 

combination of the Fortescue variant and of the robustness 

method based on the prediction error in the TVAM seems to be 

helpful in the differentiation between REM and non-REM sleep 

stages. 

I. INTRODUCTION 

The evaluation of the quality and quantity of sleep is 
extremely important, given the role that sleep plays on an 
LQGLYLGXDO¶V� HYHU\GD\� OLIH�� LQIOXHQFLQJ� PHPRUL]DWLRQ��
learning and concentration processes [1]. The traditional 
approach to sleep analysis is represented by the 
polysomnography (PSG). Signals recorded during a whole 
night, normally including several EEG derivations, ECG, 
EOG, EMG and respiratory signal, are divided into 
consecutive 30-s-long epochs classified as Wake, REM or 
NREM by sleep experts. At the end of this analysis the 
hypnogram, which represents the sleep macrostructure, is 
defined [2]. 

During the last years, the need to simplify the  practice of 
sleep evaluation has lead to the development of wearable 
technologies, to be used in a reliable way also in a domestic 
environment, and to the search for signals that are easier to 
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acquire than the EEG, but equally informative about sleep 
physiology [3]. For this purpose, the ECG has proved to 
provide valuable information, because of the fluctuations in 
heart rate produced by the ANS, which is clearly involved in 
sleep patterns. ECG is then used to derive the tachogram, 
that represents the series of time intervals between 
consecutive R peaks (called RR intervals), whose analysis in 
the frequency domain provides useful parameters for sleep 
evaluation [4]. 

Because of the interest in investigating changes on sleep 
stages, the spectral analysis of the tachogram can be carried 
out by using a Time-Variant Autoregressive Model 
(TVAM). Time-variant identification methods, for a given 
order, update the AR coefficients each time a new sample is 
available, on the basis of the previous coefficients and of a 
forgetting factor w. Different typologies of forgetting factor 
can be used in order to achieve the best compromise 
between stability in stationary conditions and speed of 
adaptation in correspondence of quick variations in the 
signal dynamics. However, the presence of artifacts in the 
signal may strongly affect the estimation of the model 
parameters [5]. For this reason, different methods of 
robustness for AR recursive identification, based on 
functions that weigh the prediction error, have been 
proposed in order to reduce the effect of the outliers [6].  

The aim of this study was the optimization of Time-
Variant Autoregressive Models (TVAM) for tracking REM - 
non REM transitions during sleep, through the analysis of 
spectral indexes extracted from tachograms. 

II. MATERIALS AND METHODS 

A. Clinical protocol 

A sitting-to-standing tachogram was obtained on a 
healthy female volunteer who wore a sensorized T-shirt 
(SMARTEX, [7]) during a sitting-to-standing test, while a 
tracing containing an ectopic beat was obtained as a short 
segment of the tachogram of a healthy female volunteer who 
wore the T-shirt during a whole night. The improvement and 
optimization of TVAM were achieved by using these two 
signals. 

The optimized TVAM was then employed in the analysis 
of signals recorded from 9 healthy female volunteers, of age 
between 18 and 45. The recordings were acquired at the 
FORENAP R&D S.A.S.U. center, in Rouffach (France). 
From each subject, during a whole night, a continuous 
recording of ECG, respiratory signal and body accelerations 
was obtained through the T-shirt. Contemporarily, each 
subject underwent a standard polysomnographic analysis, 
with acquisition of EEG, EMG, EOG, ECG, respiratory 
signal and actigraphy at the wrist and ankle. The scoring of 
these signals was performed by expert clinicians with 
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definition of the hypnogram. The TVAM order was set to 9 
for all the signals analyzed in this study. 

B. Data pre-processing 

In the present study, among all the recorded signals, only 
the ECG was employed. The hypnogram was used as 
reference for the sleep stages. An algorithm for the detection 
of the QRS complex was applied to each ECG signal, in 
order to obtain the tachogram. The identification and 
removal of outliers in each tachogram were performed by 
applying the method described by Kemper et al. [8]. 

C. Time-variant identification methods with different 

typologies of  forgetting  factor 

The comparison between time-variant identification 
methods employing different typologies of forgetting factor 
was performed by analyzing the sitting-to-standing 
tachogram. The first method used a constant forgetting 
factor w (classical Recursive Least Squares form, RLS), 
whose value was set to 0.98 in accordance with preceding 
examinations [9]. The equations used in the recursive 
identification of AR models are listed below: 

 
 
 
 

             (1) 
 
 
 
 
 

Here, a(t) is the vector of model coefficients and 3�W��
represents the observation vector of the signal y. K(t) and 
P(t) are the time-variant gain and the covariance matrix of 
data respectively, while e(t) represents the prediction error of 
the model and w is the constant forgetting factor.  

In the second method a variable forgetting factor, 
according to the Fortescue variant [10], was used. The 
forgetting factor w(t) is updated, each time a new sample is 
available, by using the following expression: 

S:P; L 5?�:ç;Åw:ç;Ø:ç;.
Ç�,

ä            (2) 

7KH� SDUDPHWHUV� 3�W��� K(t) and e(t) have already been 
defined. The term N, which represents the length of the 
running window of data, was set to 50, corresponding to a 
mean foUJHWWLQJ�IDFWRU�RI�������7KH�SDUDPHWHU�10 was set to 
the mean value of the variance of the prediction error 
obtained with the method implemented in the classical RLS 
form. The variable forgetting factor w(t) was confined to the 
interval 0.97 - 0.99 because of the signal dynamics, that does 
not require the adoption of values smaller than 0.97. AR 
coefficients, computed on a beat-to-beat basis, were then 
used to obtain an automatic spectral decomposition of the 
signal, based on a residual integration algorithm.  
Fig. 1 shows the tachogram and the spectral indexes 
obtained with time-variant identification methods employing 
both the constant and the variable forgetting factor. The 
power in the LF band (in the range 0.04 - 0.15 Hz) and in the 
HF band (in the range 0.15 - 0.4 Hz) and the LF/HF ratio are 
represented in this figure. 

 
Figure 1: sitting-to-standing tachogram and spectral indexes. Power in the 

LF and HF bands (expressed in percentage units with respect to the total 

power) and the LF/HF ratio are obtained with time-variant identification 

methods using constant (RLS) and variable (Fortescue) forgetting factor. 

An arrow on the tachogram marks the transition between sitting and 

standing position. 

As expected, the transition to the standing position is 
characterized by an increase in the LF component and in the 
LF/HF ratio. On the other hand, the HF component shows a 
decrease in correspondence of the transition. Even if in the 
Fortescue variant the power in the LF band seems to be 
underestimated during the standing position, this method is 
more stable in stationary conditions and reacts faster to 
abrupt changes in the signal dynamics, allowing for a better 
tracking of the signal dynamics. 

D. Methods of robustness for AR recursive identification 

The comparison between different methods of robustness 
for AR recursive identification, aimed at reducing the effect 
of outliers, was performed by using the tachogram segment 
containing an ectopic beat. In the first method a specific 
condition on the prediction error was applied. The model 
parameters were updated only if the absolute value of the 
current prediction error e(t) was lower than a term including 
the absolute value of the previous error e(t-1) and its 
standard deviation 1e(t-1) according to the following 
expression: 

�A:P;� O �(êØ:P F s; E � �A:P F s;�.       (3) 

This condition acts more or less restrictively on the basis of 
the value assigned to the parameter F. If a very small value 
is used, the robustness to outliers increases, but the method 
results too conservative. In this study, the best compromise 
was reached by setting F to the value 4. In the second 
method, among different weighting functions proposed in 
literature, the Hard Rejection function !�H� was adopted 
because it was considered more suitable to the analysis of 
the tachogram [6].  
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Figure 2: tachogram segment containing the ectopic beat and the model  

coefficient a1 computed by using the specific condition on the prediction 

error (red line), the Hard Rejection function (blue line) and the classical 

RLS algorithm (black dotted line).  

According to the following expression, limited weights are 
assigned to large prediction errors: 

O:�;LP s

t
�
tá��������������Q¿P

s

t
:¿P;tá���������P¿P �             (4) 

û� represents a user-chosen positive constant for balancing 
the efficiency and robustness of the algorithm and it is 
usually set to 3, while e is the prediction error of the time-
variant model. The parameter 1 is the standard deviation of 
the prediction error and is strongly affected by outliers, if 
computed with the classical recursive expression. To face 
this problem, 1 can be estimated by using a median filter 
whose order is chosen on the basis of the length N of the 
running window of data (N = 50 in this study). The Hard 
Rejection Function !�H�, as well as its first and second 
derivatives, are then used in the expressions for the 
computation of AR coefficients as described by [11].  

Fig. 2 shows the tachogram segment containing the 
ectopic beat and the trend of the model coefficient a1 
computed by using the two different methods of robustness, 
in comparison with values obtained with the classical RLS 
algorithm. Both methods of robustness for AR recursive 
identification result less sensitive to the presence of artifacts 
than the classical RLS algorithm. In addition, the specific 
condition on the prediction error allows to achieve a better 
reduction of the effect of the outliers.  

III. RESULTS  

According to the previous section, the optimization of 
TVAM was achieved by the employment of a variable 
forgetting factor (Fortescue method) and through the 
adoption of a specific condition on the prediction error as a 
method of robustness for AR recursive identification. The 
former allows a better tracking of the signal dynamics, while 
the latter allows the achievement of a better reduction of the 
effect of the outliers.  

The optimized TVAM, whose order was set to 9, was 
then employed in the analysis of tachograms derived from 
ECGs recorded during a whole night through the sensorized 
T-shirt from 9 healthy subjects. The spectral indexes were 
computed from the estimated AR parameters, on a beat-to-
beat basis, by using a residual integration algorithm.  

Fig. 3 shows a tachogram segment, relative to 1 subject 
among the 9 considered in this study, corresponding to a 
transition between REM and NREM sleep stages. Power in 
the LF and HF bands (expressed in percentage units with 
respect to the total power), LF/HF ratio and the absolute 
value of the spectrum pole in HF band [4] are also 
represented in the same figure. The power in the HF band 
shows a clear decrease in correspondence of the transition 
between NREM and REM episodes, while the LF 
component does not show a clear variation in the values 
assumed in the two sleep stages. The LF/HF ratio, which 
combines powers in both the relevant frequency ranges, 
remarks a clear difference between REM and NREM phases. 
In addition, the absolute value of the spectrum pole in the 
HF band characterizes the transition between NREM and 
REM stages very clearly.  

A statistical analysis aimed at corroborating the 
conclusions drawn from the qualitative observation of Fig. 3 
was performed. The mean value of each spectral index on 
consecutive 30-s-long windows was computed in order to 
have the same time scale of the hypnogram. 

 

 

Figure 3: hypnogram and tachogram segments selected during a transition 

between NREM and REM sleep stages, power in the LF band expressed in 

percentage units, power in the HF band expressed in percentage units, 

LF/HF ratio and the absolute value of the spectrum pole in the HF band.  
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TABLE I: 

MEAN AND STANDARD DEVIATION OF SPECTRAL INDEXES 

COMPUTED DURING REM AND NREM SLEEP.  

*REPRESENTS SIGNIFICANT DIFFERENCES (p-value < 0.05)  

 
NREM (��1� REM (��1� 

LF % 31.2 ± 9.9 32.5 ± 12.1 

HF % 37.9 ± 12.4* 27.1 ± 9.5* 

LF/HF 1.2 ± 1.1* 1.7 ± 1.1* 

|Spectrum pole| 

in HF band 
0.91 ± 0.04* 0.84 ± 0.03* 

 

Whole night data coming from 9 healthy subjects were 
analyzed. A total of 5763 and 1581 epochs of NREM and 
REM respectively were included in the analysis. A two 
groups T-test aimed at evaluating significant statistical 
differences (p-value < 0.05) between REM and NREM sleep 
stages in each spectral index was performed. The significant 
statistical differences, as reported in Table I, were found in 
HF%, LF/HF and in the absolute value of the spectrum pole 
in the HF band. These results confirm the conclusions drawn 
by the qualitative observation of Fig.3. 

IV. DISCUSSION AND CONCLUSION 

In this study, a TVAM was optimized in order to achieve 
a better discrimination between REM and NREM sleep 
stages, through the analysis of spectral indexes extracted 
from tachograms obtained on 9 healthy subjects during a 
whole night. In previous works the update of the TVAM 
coefficients was performed by employing the classical RLS 
algorithm with a constant forgetting factor w [4, 12]. 
However, a constant value assigned to this parameter may 
not always be suitable to the analysis of a signal 
characterized by transient phenomena. In fact, lower values 
of w  should be used to follow the fastest dynamics of the 
signal (e.g. a transition between two different sleep stages), 
while higher values may seem to be more adequate to the 
analysis of stationary portions of the signal (e.g. NREM 
sleep stages). For these reasons, in this study, a first 
improvement of the TVAM was achieved by choosing the 
Fortescue method because a variable forgetting factor 
seemed to be more appropriate to follow the signal dynamics 
and so to track REM - NREM transitions during sleep. A 
second improvement of the TVAM was obtained by 
employing a method of robustness for AR recursive 
identification. In this study, a better reduction of the effect of 
the outliers was achieved by using the specific condition on 
the prediction error. In this way, as shown in Fig. 2, the 
computation of the model coefficients, influencing the 
spectral parameters estimate, can be carried out in a more 
reliable way.  

According to a qualitative observation of Fig. 3, NREM 
stages are characterized by a prevalent parasympathetic 
activity with a more regular respiratory frequency with 
respect to REM sleep. In fact, power in the HF band 
assumes, in this phase, higher values than in REM episodes. 
In the same way, the absolute value of the sopectrum pole in 
the HF band is closer to the unitary circle by demonstrating a 
more regular breathing than in REM sleep. On the contrary, 
during REM sleep the sympathetic activation reaches values 
similar to wake and the respiratory activity becomes 
irregular. In fact, in REM episodes the LF/HF ratio shows an 
increase with respect to NREM sleep. Lower values assumed 

by the absolute value of the spectrum pole in the HF band 
and its oscillatory trend demonstrate a more irregular 
respiratory frequency than in NREM sleep stages. As 
reported in Table I, the spectral indexes HF%, LF/HF ratio 
and absolute value of the spectrum pole in the HF band are 
useful features that can be used in the discrimination 
between REM and NREM sleep stages.  

In conclusion, the analysis of whole night tachograms by 
means of the optimized TVAM allows to obtain spectral 
indexes whose values differ significantly during REM and 
NREM sleep stages, as reported in Table I. So the 
employment of a variable forgetting factor (Fortescue 
method) and the adoption of the specific condition on the 
prediction error allow for a real optimization of the TVAM 
in tracking REM - NREM transitions during sleep. 
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