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Abstract— A novel technique for Electroencephalogram
(EEG) compression is proposed in this article. This technique
makes use of the inter-channel redundancy present between
different EEG channels of the same recording and the intra-
channel redundancy between the different samples of a specific
channel. It uses Discrete Wavelet Transform (DWT) and Set
partitioning in hierarchical trees (SPIHT) in 2-D to code the
EEG channels. Smoothness transforms are added in order to
guarantee good performance of SPIHT in 2-D. Experimental
results show that this technique is able to provide low dis-
tortion values for high compression ratios (CRs). In addition,
performance results of this method do not vary a lot between
different patients which proves the stability of the method when
used with recordings of different characteristics.

I. INTRODUCTION

Electroencephalography is the monitoring or recording of

electrical activity in the brain. Recording techniques of EEG

involve placing electrodes either inside the brain, over the

cortex under the skull, or at certain locations over the scalp.

Electroencephalography provides an insight on the human

brain: it can detect abnormalities, diagnose mental disorders

like dementia, epileptic seizures and psychiatric disorders.

In addition, effects of the administered drugs on the changes

in EEG waveforms can be observed. EEG is also used in

telemedicine and brain computer interface (BCI).

Recording of EEG is done over several hours and along

several channels. The number of channels can even exceed

256 for increased accuracy and reliability in diagnosis.

Every sample of EEG might be important and cannot be

disregarded. The recording can result in huge amounts of

data to be stored and/or transmitted, which calls for efficient

and low distortion compression techniques. Although lossless

compression is more desired for medical signals, it was

shown that higher compression rates can be achieved using

lossy techniques.

Scalp recordings of EEG can be seen as the measure of

the projection of the activity inside the brain on certain

locations on the scalp. The same source of activity can

have several projections on the scalp. For this reason, when

reading different EEG channels, a lot of similarity and even

superposition of the signals can be noticed. When aiming at

compression of these EEG channels, looking at the signals in
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a spatial dimension, rather than just time dimension, can help

capture more redundancy and similarities. Therefore, better

compression can be achieved when combining all channels

used in the recording.

As mentioned previously, visual correlation is highly vis-

ible both between several channels and in a single channel

between different time segments. This correlation or redun-

dancy should be exploited when building a compression al-

gorithm. In compressing medical signals, it very important to

maintain all relevant information contained in the signals for

accurate medical diagnosis. Thus, an accurate reconstruction

of the EEG signals is a very important factor, specially in

tele-medicine where noise, jitter and delays, caused by the

telecommunication technique used to transmit the signals,

add further distortion to the compression. The suggested

method aims at exploring these correlations in order to

achieve better compression with low distortion using classic

transforms and coding techniques.

The following paragraphs provide a literature review on

the usage of Wavelet Transform (WT) and set partitioning

in hierarchical trees (SPIHT) in compressing EEG signals.

Afterwards, a novel method of applying these compression

methods on EEG channels is suggested. The article ends with

an analysis on the simulations’ results and suggestions for

improvement.

Cardenas-Barrera et al. use Wavelet Packet Transform

(WPT) to segment and decompose the EEG Signals [1]. The

compression algorithm is composed of the following sec-

tions: segmentation, transformation, thresholding of the low-

relevance coefficients, quantization and Run-Length Coding

(RLC). Calculating the proper thresholds is the main issue

in this model, these values should preserve the signal’s

characteristics while keeping the distortion within acceptable

limits. This compression algorithm is able to achieve a

Compression Ratio (CR) of 9.06 with a Percent Root-mean

squared distortion (PRD) of 5.3275. CR is defined as the ratio

of the number of bits used to represent the original data to

the number of bits required to code the compressed data.

This method does not examine the mutual information that

exists between the different channels of the same recording.

A 2-D compression technique that uses an integer lifting

wavelet transform (ILWT) as the de-correlator, with SPIHT

as the source coder is presented [2]. The 2-D algorithm is

compared to the same one in 1-D that also uses ILWT with

SPIHT and the 1-D case gave much higher distortion for the

same bit rate and larger delays. 2-D SPIHT coding is suited

for smooth natural images. However, EEG signals possess a

non-stationarity characteristic. Thus, the 2-D matrix formu-
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lation of the channels is not as smooth as natural images

and the compression performance deteriorates for certain

segments. Smoothness transforms should be added to the 2-D

EEG matrix to enhance the performance of SPIHT. Authors

do not show how distortion varies at different CRs, however,

bit planes are used to display the results of the compression.

EEG Compression in 3-D was applied by Dauwels et

al. and tested on two types of data [3]. Methods like

SVD (Singular Value Decomposition), Parafac and Tucker

decompositions were tested on recordings of patients with

mild cognitive impairment (MCI) and on EEG-Motor Men-

tal Imagery datasets of the physiobank database [4]. Rate

distortion curves show that Tucker and Parafac gave the best

results in compression. However results vary a lot between

the two different types of recording. Better results were found

for the second dataset where the subject opens and closes

his fist until a certain target disappears from a screen. When

reading this data, peaks are observed every few seconds and

on all channels. This data is very artificial and does not

reflect the characteristics of EEG data types that are usually

recorded over long periods of time like long-term monitoring

of patients with epilepsy.

A recent article published in Electronic Letters studies the

compression of EEG using 1-D SPIHT [5]. In this article, the

computational complexity of the method is analysed. Their

results show that 1-D SPIHT is able to achieve a CR of about

30 for a PRD of 30%. Testing was done on intra-cranial

recordings of 21 patients suffering from epileptic seizures.

However, when compressing EEG signals, results can vary

a lot between different types of recordings. 1-D SPIHT is

tested on scalp recordings in this article and the results are

shown in section IV. Authors of this article do not show

how the results are varying between the different patients.

In addition, this algorithm compresses each channel alone

and does not take into account the inter-channel redundancy

that exists between the different channels. This redundancy is

more present in intra-cranial electrodes that provide record-

ings at the same location but at different depths.

This article presents a lossy EEG compression scheme

that applies image compression techniques on 2-D EEG

matrices. Spatial correlation between different EEG channels

is reduced using 2-D DWT and SPIHT. A method that adds

smoothness to the EEG matrix is suggested. This is done

to enhance the performance of SPIHT and achieve better

performance in compression.

II. METHODS

A. Discrete Wavelet Transform (DWT)

Wavelet Transforms provide multi-resolution, locality, and

compression when combined with zero-tree coding tech-

niques. Many compression algorithms use these transforms

to decompose a signal and take advantage of the properties

of these coefficients in energy compaction.

DWT gives the time-scale representation of a digital

signal using digital filtering techniques. To find the DWT

coefficients, the signal is passed through cascades of low and

high pass filters implemented at the low frequency bands of

each level, the high frequency bands are left unchanged. The

resolution of the signal, which is a measure of the amount of

detail information in the signal, is changed by the filtering

operations, and the scale is changed by up-sampling and

down-sampling operations.

B. Set partitioning in hierarchical trees (SPIHT)

The Set-Partitioning in Hierarchical Trees (SPIHT) is a

coding algorithm that exploits the relationships between the

wavelet coefficients across the different scales at the same

spatial location in the wavelet sub-bands [6], [7]. Exact bit

usage control can be achieved using the SPIHT algorithm.

A pre-specified bit-rate or quality requirement can be used

as criterion to stop the encoding and decoding process at

any instance [8]. SPIHT targets the coding of the position of

significant wavelet coefficients and the coding of the position

of zero-trees in the wavelet sub-bands. It was originally

suggested for the compression of 2-D images, thus it exploits

the basic characteristics of this type of data. More precisely,

it exploits the following image characteristics [6]:

1) Most of the image’s energy is located in the low fre-

quency components and there is a decrease in variance

as we move from the highest to the lowest levels of

the frequency sub-band pyramid.

2) Spatial self-similarity is observed among the sub-

bands, and the coefficients are likely to be better

magnitude-ordered when going deeper in the frequency

sub-band pyramid along the same spatial orientation.

Signal’s smoothness can be measured by the amount of

energy in the low frequency bands [9]. When working with 2-

D matrices, one level of wavelet decomposition produces an

approximate sub-band (low frequency (LF) band) and three

high frequency (HF) bands. The matrix is considered smooth

when more energy is concentrated in the LF band compared

to HF bands.

III. COMPRESSION SCHEME

SPIHT coding originally targets two dimensional images.

In EEG, transferring the data into two-dimensional matrices

can be accomplished either in one channel or in a multi-

channel context. However, choosing the appropriate segment

and matrix size and the optimal channel numbering in the

multi-channel case can highly affect the performance of the

compression.

The 2-D multi-channel matrix is formed by choosing the

rows of the matrix as segments from different channels as

follows:

EEGi =

⎡
⎢⎢⎢⎣

si,1
si,2
...

si,M

⎤
⎥⎥⎥⎦ (1)

where si,l is the EEG segment of index i of channel at index

1 and M is equal to the number of channels used in the

recording. Each EEG segment used in the matrix groups N
consecutive time samples. Arrangements of the channels in

the matrix affects the smoothness of the matrix and thus the

performance of the compression.
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The algorithm first computes the correlation coefficient of

each row of the matrix with all other rows. To build the

smooth EEG matrix, the first row is kept as the first EEG

channel used in the recording, then each adjacent row is

chosen as the highest correlated row among all other rows

in the matrix. When doing this, in most matrices, the last

rows are the channels that are close to the reference. This is

due to the fact that there is least amount of activity in this

region.

This method of choosing the rows of the matrix guarantees

that each two adjacent rows are highly correlated. To achieve

more smoothness, the first P+1 rows are selected. The value

P is chosen as the highest value that is smaller than M
and divisible by 2k, with k equal to the number of levels

used in the DWT. From these P+ 1 rows or channels, the

channel that has the highest correlation coefficient with all

other P channels, Re f , is selected. The values of its samples

are subtracted from each channel of the P-by-N matrix.

This results in added smoothness to the 2-D EEG matrix.

DWT is then applied on this P-by-N matrix. However,

high correlation is still present within the blocks of the

DWT coefficients of the same sub-band, which is common

when compressing naturally smooth images [10]. To reduce

this, a de-correlation block, that involves simply applying

Discrete Cosine Transform (DCT), was added after DWT

[10]. SPIHT coding is then performed on the transformed

DWT coefficients.

The reference channel and the other least correlated chan-

nels are coded using 1-D DWT and SPIHT. The indices of

the channels showing the chosen arrangement in the matrix,

and the index of the highest correlated row, Re f , are sent as

overhead with SPIHT output. This coding scheme is repeated

for every block of M × N samples in the recording.

IV. RESULTS AND DISCUSSIONS

In the scalp recordings done at the EEG lab at the Montreal

Neurological Institute (MNI) that are used in this paper, 29

electrodes are used with a sampling frequency of 200 Hz.

The montage used is referential with the reference located

on the center of the scalp, known as FCz in the International

10-20 System [11, p.139].

The performance parameter used to analyse the results is

the percent-root mean square distortion (PRD):

PRDi,l(%) =

√
∑N

n (si,l [n]− ŝi,l [n])2

∑N
n si,l [n]2

×100 (2)

where si,l [n] is the EEG sample n of segment at index i and

channel at index l, and ŝi,l is the reconstructed EEG segment

after compression. Thus PRD is calculated for each EEG

channel, l, and segment i, then the mean over all segments

and channels is calculated to reflect the PRD at a certain CR.

In the testing, M is equal to 29, resulting in P equal to

24 for a DWT number of levels, k, equal to 3. Values of k
equal to 2, 3 and 4 were tested and 3 was chosen because

it guarantees that the least correlated channels coded using

1-D SPIHT are the four channels closest to the reference. It

gave better performance than the other values. For choosing

the appropriate wavelet in the DWT, it is suggested that

Biorthogonal 4.4 wavelet has a more established popularity

in compressing 2-D images [12], [13]. The compression

method re-arranges the 2-D matrix in order to achieve more

smoothness. The transformed EEG matrices have almost

similar properties as natural images. For this reason, in our

testing, biorthogonal 4.4 proved to be better than the classic

Haar wavelet.

Fig. 1 shows the PRD results for different compression

ratios of 1-D SPIHT and 2-D SPIHT. 1-D SPIHT was used

with segment length N equal to 1024, which gave the best

results compared to other values like 128, 256 and 512. The

size of the EEG channel segments used in the 2-D SPIHT

method is equal to 256. A 5 level DWT with biorthogonal

4.4 wavelet, was performed prior to SPIHT coding in the

1-D case. This plot highlights the fact that 2-D SPIHT is

able to achieve higher compression ratios for the same PRD

percentage. This is due to the fact that in the one dimensional

case, the correlation between the channels still exists after

compression. Thus, redundant information is still being sent.

In addition, when applying SPIHT in 2-D, the entropy of the

output is close to 0.5. Whereas, for 1-D SPIHT, the entropy is

close to 1. For this reason, a Run-Length coding (RLC) block

was added to 2-D SPIHT output and there was a relevant

decrease in the total number of bits required for coding a

specific matrix.

1-D SPIHT is shown to achieve a CR of about 30 for

a PRD of 30% when tested on intra-cranial recordings of

patients with epilepsy [5]. However, when testing on the

scalp recordings obtained from MNI, results are different and

the proposed method is able to achieve better compression

performance. This highlights the fact that EEG recordings

differ a lot between different types of recording methods

and different patients.

The proposed method is compared to Tucker and Parafac

tensor decompositions applied on 3-D EEG tensors [3]. The

size of the tensor used in these two methods is equal to

29-by-16-by-16. Thus the same EEG segment used in 2-D

SPIHT of size N equal to 256 is arranged in 2-D as 16-

by-16 as explained in the article [3]. The third dimension

in these two methods is the EEG channel number. Testing

was done on 9 patients over a period of one hour for

each patient. Fig. 3 shows the PRD results with the 25

and 75 percentiles to highlight how the PRD values are

varying between the patients. The proposed method gave

better performance results than Tucker and Parafac. However

for CRs higher than 18.5, the performance of the new method

and Parafac are almost the same. A 7% PRD is suggested

to be the maximum allowed loss for preserving clinically

relevant information [1], [5]. For this PRD value, Parafac is

able to achieve a CR of around 2, while the proposed method

can achieve a CR of around 5. The methods were also tested

for N equal to 1,024, resulting in 29-by-32-by-32 tensors,

but the same improvement in performance was noticed. The

only difference in the results is all three PRD lines drop by

almost 3%.

For compression ratios below 20, the PRD results vary

2234



2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

Compression Ratio

P
R

D
 (%

)

1−D SPIHT
2−D SPIHT

Fig. 1. Percent-root mean square distortion comparison between 2-D and
1-D SPIHT.

much less between patients for the proposed method than

for Parafac and Tucker. This variance is negligible for CRs

below 7. This criterion is very important in EEG compression

since the characteristics of the recordings vary a lot between

different patients.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Looking at the EEG channels in 2-D enables us to make

use of the redundancy found between the channels and

between the samples of the same channel. The proposed al-

gorithm is able to achieve low variance between patients and

low distortion compared to other compression methods like

1-D SPIHT, Tucker and Parafac. For PRD values lower than

30%, the proposed algorithm achieves higher compression

ratios. Above this value, distortion can be regarded as high

which is to be avoided when dealing with biomedical signals

with important diagnostic information.

B. Future Works

EEG recordings vary a lot between both different types

of recordings and different patients of the same type of

recordings. Thus, finding an algorithm that has stable perfor-

mance is a challenge. In addition, the compression scheme

should still preserve important diagnosis information. It

would be important to test abnormality detection systems,

like epileptic seizure detection, on both the original data and

the compressed output to further analyse the performance

of the compression algorithm. In addition, the performance

of the compression should be tested on different types of

recordings like invasive intra-cranial EEGs.
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