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Abstract— Tri-axial accelerometers have been widely used
for human activity recognition and classification. A main
challenge in accelerometer-based activity recognition is the
system dependence on the orientation of the accelerometer. This
paper presents an approach for overcoming this challenge by
calibrating the accelerometer orientation using pre-defined ac-
tivities alongside automated correction algorithms. This method
includes manipulation of data via rotation matrices estimated
from the pre-defined activities. The system is subsequently
tested with real data where sensors were placed in the wrong
orientation. A control set of correctly oriented sensors were also
placed for validation purposes. We show that our approach
improves the accuracy from 38% to 92% for the wrongly
oriented sensors, when the control sensors achieve 95%. A GUI
was also created in order to make the tool easily available to
other researchers.

I. INTRODUCTION

Activity monitoring is a new and important field in health-
care and sports. Its uses include stroke rehabilitation, athletic
training, out-patient health monitoring, early fall detection,
and gaming [1], [2]. It is revolutionizing the health profession
by providing detection and care that is not possible through
conventional means. The most popular methods for activ-
ity monitoring use cameras and portable sensors. Portable
sensors are more scalable, effective for personalization for
the system, and cost efficient. In this paper, we focus
on systems using portable accelerometers. In real world
applications, many activity classification algorithms are not
robust due to issues related to sensor orientation. In this
work we use personalized and supervised learning methods
where a training is used to build an activity classifier for
each user. For these methods, a classifier would be build
using accelerometer places in a specific orientations. The
robustness issue comes to play, when there is a mismatch
in the accelerometer orientation between the training, and
the testing or subsequent use of the system. This is a very
practical problem since the users will wear their accelerome-
ters at different times and use their trained classifier built in a
previous time. Activity recognition algorithms areexecutedon
training under known sensor orientations, subsequently the
classifications are sensitive to those orientations as well.In or-
der to make the systems more robust, calibration algorithms
must be in place to manipulate and correct data produced
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by incorrectly oriented sensors placed unintentionally wrong
by the patient or subject. There are two traditional means
for dealing withproblems revolving around theorientation
of sensors. The first is to findorientation-invariant features,
using mathematical manipulations such as power spectral
density or a Fourier Transform [1]. The other is calibration
through a series of movements.In this paper we propose and
evaluate a method to calibrate a system of sensors through
a series of simple pre-defined movements.Additionally we
propose an algorithm to automate the system of sensors
calibration using orientation invariant motion recognition
methods. This method is then tested on real data for human
motion recognition.

Very few researchers considered this problem. In [3],
the authors use a similar approach but do not report the
improvement you could get from such a method. We think
that this is a very important step in realizing accelerometer-
based activity recognition systems. The contribution of this
paper is that it shows the effectiveness of accelerometer
orientation calibration using pre-defined movements on real
data. Our results are based on real experiments using three
sensors, for seven daily-life activities.

II. METHODOLOGY

A. System Description

In this project we use the GCDC Miniature 3-axis Ac-
celerometer Data Logger X6-2mini [7]. Our accelerometers
sample at 160Hz, with a range of ±6g, recording at 16 bits of
resolution. For classification purposes, the algorithms include
a naı̈ve Bayes classifier, combined with a decision tree. At
each node of the decision tree, one or two mathematical
features are extracted from each sensor. Features include
mean values, standard deviations, and energy, among others.
The specific features and activities used for experimentation
purposes are discussed in the experiments and evaluation
section.

B. Rotation Matrix Estimation Method

We use rotation matrices to calibrate the disoriented data
measured by a disoriented sensor. Each sensor measure the
acceleration in a 3-D space relative to the sensor orientation,
we refer to that space by sensor space. We use a reference
3-D space that corresponds to gravity, and we call it hand
space. In this space gravity is aligned with the y-axis.

For each sensor, a 3x3 rotation matrix is constructed
to calibrate the disorientated data. Orientations in three-
dimensions can be used to represent one system’s orientation
relative to another [4]. In this method we use a fixed system
where gravity is aligned with the y-axis. In this paper, it
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Fig. 1. Three Dimensional Acceleration Signals

Fig. 2. The figure on the left shows the system for a correctly placed
sensor. The figure on the right shows the system for an incorrectly placed
sensor

will be referred to as hand space, as we use gravity as a
reference to align with the hand. The sensor has its own
orientation however, which can be represented relative to the
hand. Thus if we have a rotation matrix that represents the
sensor in hand space, it will make the sensor data appear to
come from a sensor that is aligned with the hand as shown
in Figure 1. This is doable because all sensor data is related
by an absolute, the gravity vector, as shown in Figure 2.

Using a feature of rotation matrices, if an inverse is
performed on the 3x3 matrix of the hand in sensor space, it
becomes the sensor in hand space. This rotation matrix can
then be multiplied by the data being recorded by the sensor,
and the sensor data be manipulated to look as though it is
being produced from a correctly oriented sensor.

C. Estimating the Orientation

An algorithm was developed to automate sensor calibra-
tion for systems of sensors simultaneously. Having the user
perform movements shown in Fig. 3 and 4, an algorithm
(described in detail below) recognizes those movements,
records the acceleration signatures, and applies rotation ma-
trices to correct the data. The correction motion is easy for
the naı̈ve users to perform, so that the rotation matrix can
be automatically built and applied on the subjects’ data for
researchers to utilize without difficulty.

The first step is aligning the signals. To do this, the sensors
are all held together in the same orientation and violently
shaken. Once the time signature on all the sensors is clear,
the signals are time shifted to make all movements recorded
from the individual in sync. The data are also put through a
low pass filter prior to processing. This ensures that shaking
dynamics are kept at a minimum and tilt is emphasized. This
also makes the method more robust to deal with individuals
that have trouble holding still, such as Parkinsons disease.
The sensors would otherwise produce sudden spikes in the
data, creating a high standard deviation, giving the illusion
of movement indication.

The second stage consists of finding the time period

Fig. 3. Calibration Action 1.

Fig. 4. Calibration Action 2.

when the individual was standing upright. Regardless of
orientation, the sensors must be worn flat against the skin.
This ensures that if the individual is standing upright, the
sensors z-axis will always be perpendicular to gravity and
read zero. The other indication that the individual is standing
upright and still, is the data produced by the accelerometers
will have minimal movement, indicated by a low standard
deviation. Within the signal, a time frame of 10 seconds is
searched for, where the accelerometers z axis is parallel with
the ground, and the individual is holding still. This is marked
by an average z-reading of less than 0.2g, and a low standard
deviation in x and y indicating stillness in the subject. These
values are then recorded and placed into the second column
of the rotation matrix.

The transitional period from standing to lying down is
marked by a very high average standard deviation on the
three sensors attached to the individual. The individual lying
down, is found by a period following the transitional period
with a low standard deviation on all three axes. This ensures
that as long as the individual stands upright, and then
subsequently lies down, all of the needed signals will be
found for rotation matrices processing.

Once these time periods are found, average values over 10
seconds are now available for each of the sensors in each of
the needed axes. The values are put into a rotation matrix,
inverted and then multiplied by the sensor data as described
in the previous sub-section. The method is robust and user
friendly, as it can automatically calibrate data, rather than
having individuals finding time signals visually or recording
them from an external device.

III. RESULTS AND EVALUATION

A. Single Sensor Experiments

An initial experiment was conducted to test the effective-
ness of this calibration method on the subjects wrist. One
sensor was correctly oriented, while two sensors were placed
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Fig. 5. Data from non-calibrated sensors.

Fig. 6. Data from calibrated sensors.

in incorrect orientations on various parts of the wrist, as
well as tilted to different angles. Control indicates the sensor
that was correctly oriented. Experiments 1 and 2, denote the
sensors that were incorrectly oriented. The x, y, and z axes
are denoted as, red, green, and blue lines in that order.

A series of movements were performed, and the rotation
matrices were applied via the calibration algorithm. In Figure
5, it is seen that the signals from the sensors are related,
but yield vastly different results. In Figure 6 however, the
signals all look almost indistinguishable from one another
aside from a time delay, and the control is unchanged. These
early experiments were an indication that the algorithm was
successful.

B. Multiple Sensor Activity Classification

In this experiment, the calibration algorithm was tested on
two systems of 3 sensors attached to different locations on
the subjects body. Three sensors represented the control, as
well as the base of the training data, and the other three are
the experiment, placed at identical locations with different
orientations. These locations were the right ankle, the right
wrist, and the chest of the test subject. The activities being
trained and classified were slow walking, running, walking
up stairs, walking down stairs, sitting, lying down, and
standing upright.

Our naı̈ve Bayes decision tree classifier is shown in Figure
7. The first distinction between motion activities and still
poses was made in the first branch. This distinction is of
importance to us, because still motion activities can be de-
termined only through tilt, and are subsequently much more

Fig. 7. The Decision Tree Used. The features used are shown on every
node.

Fig. 8. Confusion Matrix for Correctly oriented Sensors

dependent on the orientation of sensors. Motion activities can
be determined often times through motion invariant features,
such as average standard deviation of the x, y, and z axes.

In this experiment the calibration algorithm was applied
to two systems of 3 sensors attached to different locations
on the subject’s body. Three sensors represent the control,
and the other three represent the experiment, as incorrectly
oreiented sensors. The individual wearing the sensors un-
derwent 7 activities to be classified: slow walking, running,
walking up stairs, walking down stairs, sitting, lying down,
and standing. The three experimental sensors were tested for
accuracy both before and after the calibration algorithms,
and compared to the control experiment. The sensors were
located on the right ankle, the right wrist, and the chest of
the test subject.

Our naı̈ve Bayes decision tree classifier is shown in Figure
7. For example, the first distinction made was between
motion activities and still poses. It was found that the
maximum value of the y-axis was the most accurate feature
for separating these sets using cross validation. Subsequently
nodes are added to the tree until all 7 activities have their
distinguished sets of features.

Figure 8 represents the control of the experiment using
correctly oriented sensors. The activities were classified
correctly with an accuracy of 96%. The incorrectly ori-
ented sensors in Figure 9 had only 38% accuracy. Once
the algorithm was run on the data, the data was again
tested for activity classification and an accuracy of 93% was
achieved . Also, it is clear that some activities are accurately
classified regardless of orientation. The reason is that still
activities are entirely orientation dependent, while mobile
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Fig. 9. Confusion Matrix for Non-Calibrated Incorrectly Oriented Sensors

Fig. 10. Confusion Matrix for Calibrated Incorrectly Oriented Sensors

activities can be classified on a range of features, some being
more orientation dependent than others. For example high
average standard deviation, can mark running, which is also
rotation invariant. The data indicated that with very poor
placement, the algorithm could make sensor data on average,
accurate within 3% of the correctly oriented sensor data.
This indicates a successful method to be used and developed
further in the future.

C. Graphical User Interface

A GUI was created so that researchers could choose to
calibrate individual body parts, or a system of three sensors
simultaneously. After choosing the body part(s) that need
calibrating, the individual selects the data file that needs to
be preprocessed, and a message will appear indicating its
success. Figure 11 is the first screen, and after selecting Full
Body, Figure 12 is the second screen showing the positions
needed for calibration and a sample to show a successful
calibration.

IV. CONCLUSION

In this paper, we presented an approach for correcting
the data recorded by misoriented accelerometers used for
activity recognition purposes. This approach uses rotation
matrices estimated from pre-defined activities done by the
user at the initialization of the system. We show that it
improves the accuracy from 38% to 92% for a real data
set of 7 activities. Based on these promising results we are
pursuing an extension to this work. This involves automatic
recognition of activities that may be used for calibration of
sensor orientation, rather than requiring the subject to engage
in a set of prescribed activities, which may themselves be
subject to error. This requires collection of a large training
sets over multiple subjects that include many orientation
errors so that the classifier may be self-calibrating through
recognition of error states. While the work involved in

Fig. 11. GUI Home Screen

Fig. 12. Gui Final Screen

model creation is larger, methods that further reduce what is
demanded of users may ease scaling to very large numbers.
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