
  

 

Abstract— The European Project MUltimodal 

Neuroprosthesis for Daily Upper limb Support (MUNDUS) 

aims at the development of an assistive platform for recovering 

direct interaction capability during daily life activities based on 

arm reaching and hand functions. Within this project the 

present study is focused on the design of a biomimetic controller 

able to modulate the neuromuscular electrical stimulation 

needed to perform reaching movements supported by a 

commercial passive exoskeleton for weight relief. 

Once defined the activities of daily life to be supported by the 

MUNDUS system, an experimental campaign on healthy 

subjects was carried out to identify the repeatable kinematics 

and muscular solution adopted during the target movements. 

The kinematics resulted to be highly stereotyped, a root mean 

squared error lower than 5° was found between all the 

trajectories obtained by healthy subjects in the same movement. 

A principal component analysis was performed on the EMG 

signals: less than 5 components explained more than the 85% of 

the signal variance. This result suggested that the muscular 

strategy adopted by healthy subjects was stereotyped and can 

be replicated by a biomimetic NMES controller. The controller 

was based on a time-delay artificial neural network which 

mapped the dynamic and non-linear relationship between 

kinematics and EMG activations to determine the stimulation 

timing. The stimulation levels reproduced the same scaling 

factors found between muscles in the stereotyped strategy. The 

controller was tested on 2 healthy subjects and though it was a 

feedforward controller, it showed good accuracy in reaching the 

desired target positions. The integration of a feedback 

controller is foreseen to ensure the complete accomplishment of 

the task and to compensate for unpredictable conditions such as 

muscular fatigue. 

I. INTRODUCTION 

MUNDUS is an assistive framework for recovering 
interaction capability of severely impaired people based on 
upper limb motor functions (http://www.mundus-project.eu). 
Within this project, the present work aimed at integrating a 
commercial passive exoskeleton for weight support with a 
Neuro Muscular Electrical Stimulation (NMES) controller 
for arm movements. 

The complex mechanics of the human body associated 
with its many degrees of freedom (DOF) and its multiple, 
nonlinear actuators have largely thwarted attempts to find 
analytical solutions for controlling movements. This is the 
well-known problem of motor redundancy every day issued 
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by our brain. The infinite possible solutions are solved in a 
very stereotyped manner by healthy subjects based on the 
optimal control hypothesis which states that the 
physiological use of our motor apparatus responds to an 
optimum exploitation of human motor system to achieve the 
desired task [1, 2]. In fact, although a broad number of motor 
solutions are feasible to achieve any task, it has largely 
showed that a high repeatable kinematic of muscular 
solutions (stereotypes) are usually observed even for 
complex movements. This behavior can be explained 
asserting that any available motor solution has a cost and the 
central nervous system utilizes an optimal control system to 
select the minimum cost solution [1]. Starting from this 
assumption, we can study the physiological muscular 
strategy during any task and try to mimic it through NMES. 

Artificial neural networks (ANN) have been shown to be 
capable of dealing with the nonlinearities and complex 
dynamics observed in the neuromuscular system, and several 
attempts to use them for NMES control can be found in 
literature [3-5]. These studies demonstrated that an ANN-
based controller is capable of generating the appropriate 
levels of stimulation for muscles involved both in single joint 
movement or coordinated tasks.  

The approach followed in this study can be summarized 
in three steps. First, user requirements were identified to 
define the interaction tasks to be supported by the final 
MUNDUS system. Then, an experimental campaign on 
healthy subjects was carried out and EMG and kinematics 
data were analysed to identify a stereotyped strategy adopted 
during the target reaching movements. Finally, the 
biomimetic NMES controller based on ANN was designed 
and tested on healthy subjects. 

II. THE DEFINITION OF INTERACTION TASKS 

To identify the users and clinical requirements a twofold 
strategy was adopted based on a user-centred approach [6]. 
A focus group of experts, and end users’ interviews were 
used to identify the possible applications of the MUNDUS 
system and to assess the willingness of people with 
disabilities to try out the system. The data collected 
identified the need for some specific activities of daily life 
such as drinking with a straw, pressing a button, touching a 
spot on the body, interacting with objects for personal 
hygiene, and eating. Starting from these interaction tasks, the 
following motor tasks were identified: reaching objects 
placed in 3 different positions on the table and bring them to 
the mouth; reaching the shoulder from rest position (Fig. 1). 
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III. THE IDENTIFICATION OF STEREOTYPED STRATEGY 

A. Experimental Procedure  

A passive exoskeleton, shown in Fig.1, (ArmeoSpring®, 
HOCOMA AG, Switzerland) supported the arm weight 
during tasks execution and a customized orthosis was used to 
prevent the prono-supination of the forearm and the wrist 
flexion/extension, in order to replicate the conditions in 
which the users will use the final MUNDUS platform. 
During movements, EMG signals were acquired from the 
following muscles: biceps, triceps, anterior, medial and 
posterior deltoid, and trapezius. The potentiometers 
embedded in the ArmeoSpring measured the angular 
trajectories of the shoulder elevation in the sagittal plane and 
the shoulder rotation in the horizontal elevation plane; an 
electrogoniometer was used to measure the elbow flexion-
extension. Attention was paid to ensure the same rest 
position and objects placement between subjects, in terms of 
joint angles. Six healthy volunteers were involved in the 
trials. They repeated 12 times all the interaction tasks. 

B. Data Analysis 

Each task was divided into sub-actions. The interactions 
with the objects on the table were divided into 4 sub-actions: 
(1) reaching the object from the rest position; (2) bringing 
the object to the mouth; (3) bringing back the object to the 
table; (4) coming back to rest; while the movement to reach 
the shoulder was divided into 2 sub-actions: (1) from rest to 
the body landmark, and (2) back to rest.  

The EMG signals were off-line high-pass filtered (5th 
order Butterworth, cut-off frequency of 10 Hz), full-wave 
rectified and low-pass filtered (5th order Butterworth, cut-off 
frequency of 5 Hz). The obtained EMG envelopes were 
normalized with respect to the EMG recorded during a brief 
isometric maximal voluntary contraction (MVC). Both 
normalized EMG profiles and angular trajectories were 
resampled by a cubic spline to have the same number of 
samples among all repetitions.  

In order to investigate whether a common stereotyped 
kinematic strategy existed between subjects, for each sub-
action, the Root Mean Squared Error (RMSE) between the 
angular profiles of each subject and the ones obtained by 
averaging all subjects was computed.  

A Principal Component Analysis (PCA) was used to 
obtain an EMG activation profile per each muscle and sub-

action (starting from the 12x6 normalized profiles). If a low 
number of principle components were enough to explain 
more than the 80% of the signal variance the profile was 
defined as stereotyped.  

C. Results 

The RMSE computed on kinematics data was equal to 
4.7° ± 3.1°, a value comparable to the RMSEs obtained by 
averaging all the trajectories of each subject and to the error 
of 5° due to the replacement of the rest position and of the 
objects positions on the table between the subjects. Thus, we 
concluded that a common stereotyped kinematic strategy 
existed between the healthy volunteers involved in the 
experimental campaign. 

Concerning the EMG analysis, less than 5 principal 
components were enough to describe more than the 85% of 
the variance. In particular, 5 components were required only 
for muscles characterized by a low activation (less than 5% 
of the MVC). These results highlighted that the muscular 
strategy adopted is stereotyped indicating the possibility to 
replicate it through a biomimetic controller for NMES. 

IV. THE BIOMIMETIC NMES CONTROLLER 

A. The Controller Structure 

The feedforward biomimetic NMES controller includes 
the cascade of three components as shown in Fig. 2: 

 
 The selection of the desired angular trajectory based 

on the anthropometric data of the user (upper and 
lower arm lengths). The kinematic data acquired on 
the 6 healthy subjects were classified into two 
clusters (women and man cluster in the following). 
Once measured the anthropometric data of a new 
subject, the cluster the subject belongs to is 
identified and the desired angular trajectories are 
chosen from the data set acquired for training 
accordingly. 

 A time-delay ANN (TDANN) which maps the 
relationship between kinematics data and EMG 
activations to determine the stimulation timing (see 
the following section). 

 A stimulation mapping between the TDANN outputs 
and the stimulation pulse width (PW) levels. For 
each muscle a scaling factor was used to replicate 
the proportionality of the activation measured in the 
different interaction tasks. This means that the 
scaling factors differ among the different tasks. The 
scaling factors are multiplied by the maximal PW. 

 

Fig 2: Structure of the biomimetic NMES controller 

  

 

 

 
Fig 1: Target movements  
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B. The TDANN Design and Optimization 

Both static ANN (i.e., current values of muscle 
activations as the only inputs) and TDANN (i.e., current and 
previous muscle activations as inputs) were evaluated. Time-
delay inputs were considered to capture the spatio-temporal 
properties of the muscle activations. The number of delays 
determines how many past values of the input signals should 
be used as inputs to accurately produce the outputs. This 
delay value was varied between 0 (static ANN) and 100 ms 
(5 samples at 50 Hz) and after training different networks a 
delay of 60 ms was chosen as the best compromise between 
network performance and real-time application.  

The architecture of the TDANN was defined as a 2-layer 
perceptron having 12 inputs including the 3 kinematic 
current angles and 3 past values for each input and a 
maximum 5 outputs (the EMG profiles analyzed using the 
PCA). The number of outputs resulted to be variable 
between the different sub-actions. Indeed, when the 
normalized EMG acquired on all the subjects was less than 
the 5% of its correspondent MVC, the muscle was 
considered not active at all and, for that specific sub-action 
the output was removed from the architecture. We selected 2 
outputs, i.e. biceps and anterior deltoid, for the interaction 
with the shoulder, whereas 3 outputs, i.e. biceps, anterior, 
and medial deltoid, for the 2 central sub-actions (sub 2-3) of 
the interactions with the objects. For the other two sub-
actions “from rest position to the object” and “from the 
object to rest”, the muscle activation was too low to 
recognize a reliable stereotyped strategy. 

To take into account the physiological delay between the 
delivery of the stimulation and the movement production, the 
EMG profiles were shifted backwards about 120 ms with 
respect to their correspondent kinematic data.  

The activation functions were hyperbolic tangent 
functions in the hidden layer and linear transfer functions in 
the output layer. The number of neurons used in the hidden 
layer was varied systematically between 6 and 24 hidden 
neurons while testing errors were monitored. The goal was to 
find the smallest architecture capable to provide good 
performance results. The chosen ANN was the network that 
minimized the error on data never seen during training [5].  

C. Tracking Performance of the Chosen TDANN on the 

Training and Testing Data Set 

Fig. 3 reports an example of the tracking performance 
obtained during the interaction with Object 2. In particular 
the comparison between the desired output (the three 
normalized EMG profiles collected for the TDANN data set) 
and the 3 corresponding outputs computed by the trained 
TDANN. The TDANN performance worsened at the 
beginning and at the end of the sub-action. This can be due 
to the training set that was defined as the cascade of different 
repetitions of each sub-action creating relevant gaps between 
the last sample of one repetition and the first sample of the 
consecutive one. The performance of the chosen TDANN in 
each sub-action obtained on the training and testing set was 
computed in terms of mean and standard deviation of the 
Mean Squared Error (MSE) obtained separately on each 

output. The MSE computed averaging all the sub-actions 
was about 0.076±0.024 on training and 0.017±0.013 on 
testing sets. Thus, none of the TDANN overfitted on the 
training data. 

 

D. Experimental Testing on Healthy Subjects 

The biomimetic controller was tested on 2 healthy 
subjects in all the interaction tasks. A current-controlled 8-
channel stimulator (RehaStim; Hasomed GmbH) was used 
and surface electrodes were applied in a bipolar 
configuration on biceps, medial and anterior deltoid muscles. 
Rectangular biphasic pulses with a stimulation frequency of 
50 Hz were adopted. Before the beginning of the trials the 
stimulus intensity was set individually for each muscle at a 
tolerable value producing the maximal range of motion of 
the corresponding joint with a PW of 500 µs.  

In each task tested the subject was asked first to perform 
the two sub-actions voluntarily without any stimulation. 
Then 6 repetitions of the two sub-actions were induced by 
the biomimetic NMES controller. When the biomimetic 
controller was active the subject was asked not to contribute 
voluntarily to the movement and the PW was modulated 
between 100 and 500 µs. The NMES controller maintained 
the last stimulation value obtained during the first sub-action 
while waiting for the beginning of the second one. 

Given the task, the sub-action, and the anthropometric 
data, the kinematic inputs to be used as inputs of the 
TDANN were selected as described in section IV.A. Thus, 
the biomimetic controller worked only as a feedforward 
controller and the stimulation profiles just reproduced the 
pre-learned EMG activations. Fig. 4 shows the results 
obtained by one subject during a representative task: 
bringing object 1 to the mouth (sub 2, panels (a) and (c)) and 
coming back to table (sub 3, panels (b) and (d)). In the upper 
panels, the angular trajectories induced by NMES and the 
target points reached voluntarily by the subject are shown; in 
the lower panels the pulse width delivered to the muscles are 
reported.  

 
Fig 3: A representative example of the tracking performance obtained 
by the TDANN optimized for Object 2 sub 2 on the testing input 
values extracted from the “woman cluster”. 
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The performance of the controller was evaluated 
computing the difference between the target point and the 
position reached through the NMES controller both in terms 
of the 3 angular DOF and in terms of end effector position. 
The end effector position was estimated using a kinematic 
model having the reference frame in the shoulder (Fig. 1) 
and considering the humeral rotation fixed at 45°. 

 

TABLE I.  PERFOMANCE OF THE BIOMIMETIC CONTROLLER 

COMPUTED IN TERMS OF THE DISTANCE BETWEEN THE TRUE TARGET POINT 

OF EACH SUB-ACTION AND THE FINAL POINT REACHED BY NMES.  

 

Elbow 

[deg] 

Shou Rot 

[deg] 

Shou Elev 

[deg] 

X  

[cm] 

Y  

[cm] 

Z 

[cm] 

ToShoulder 
      

Sub 1 
37.86 ± 

18.78 

-4,91 ± 

2.66 

6.26 ± 

2.96 

15.20 ± 

7.16 

14.68 

± 4.68 

-13.32 

± 

7.10 

Sub 2 
-8.74 ± 

8.16 

19.03 ± 

9.88 

-2.49 ± 

1.24 

-17.25 

± 5.49 

12.15 

± 3.84 

6.10 ± 

4.60 

Object 1 
   

   
Sub 2 

4.82 ± 

3.41 

4.65 ± 

3.46 

-9.59 ± 

3.86 

-3.24 ± 

1.16 

1.76 ± 

1.41 

4.24 ± 

1.77 

Sub 3 
-13.24 ± 

6.42 

-2.88 ± 

5.94 

2.79 ±  

3.69 

-3.43 ± 

4.01 

2.29 ± 

5.48 

2.52 ± 

1.63 

Object 2 
      

Sub 2 
7.28 ± 

4.35 

5.36 ± 

6.42 

-7.59 ± 

1.33 

-1.12 ± 

4.35 

2.61 ± 

2.27 

3.34 ± 

0.59 

Sub 3 
-3.77 ± 

5.26 

-5.17 ± 

3.85 

0.65 ± 

2.22 

1.99 ± 

3.36 

-2.87± 

2.72 

0.94 ± 

1.12 

Object 3 
      

Sub 2 
2.41 ± 

2.87 

0.93 ± 

3.78 

-4.18 ± 

5.60 

-0.76 ± 

2.72 

0.17 ± 

0.48 

1.89 ± 

2.57 

Sub 3 
-5.14 ± 

7.95 

-6.17 ± 

3.72 

2.88 ± 

3.14 

3.27 ± 

4.89 

-2.68 

± 1.39 

-0.21 ± 

1.01 

Mean and standard deviation obtained on all repetitions are reported. 

 
In Table I, the NMES controller performance obtained 

by averaging all repetitions of both subjects in the four 
interaction tasks are reported. In terms of angles, a mean 
error of 5° was achieved in all sub-actions of the interactions 

with objects, while a higher error was found for the two sub-
actions of the movement to reach the shoulder (13°). In terms 
of 3D-coordinates, a mean error of 2 cm was obtained in the 
interactions with objects, while a higher error (13 cm) was 
computed in the movement to touch the shoulder. 

V. DISCUSSION AND CONCLUSION 

The present work deals with the development of a 
biomimetic feedforward NMES controller integrated with a 
passive exoskeleton for upper limb support during daily life 
activities. The controller is based on TDANN and 
reproduces the non-linear and dynamic relationship between 
the kinematics and the stereotyped muscular strategy used by 
healthy subjects to perform the target movements.  

In the definition of the stereotyped muscular strategy only 
the muscles that are easy and safe to be stimulated were 
measured and analysed: thus, we did not consider the 
pectoralis major even if it is recognized as one of the most 
important muscles in reaching movements [7].  

In the planar movements performed with the support of 
the exoskeleton, the muscle activation was too low to 
recognize a reliable stereotyped strategy. To overcome this 
problem an additional planar resistance should be added to 
make the muscles work harder and exhibit larger EMG 
during the training session. In this study the biomimetic 
controller was not used to support planar movements. The 
biomimetic NMES controller, although it was only a 
feedforward controller, showed good accuracy in reaching 
the target points in all the anti-gravity movements (e.g. 
reaching the mouth from the table) and in the movements in 
which a smooth decrease of stimulation was needed (e.g, 
from the mouth to the table). Naturally, the integration of a 
feedback controller is foreseen to ensure the task 
accomplishment and to compensate for unpredictable 
conditions such as muscular fatigue and it will be included 
before testing the system on patients. 
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Fig 4: Results obtained by one subject during the execution of a 
representative task: bringing object 1 to the mouth (panels (a) and (c)) 
and back to the table (panels (b) and (d)). Panels (a) and (b) show the 
angular trajectories, while panels (c) and (d) report the pulse width 
profiles. The dashed horizontal lines indicate the target points reached 
voluntarily by the subject. 
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