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Abstract— This paper presents an extension of a real-time 
obstacle avoidance algorithm for our laser-based intelligent 
wheelchair, to provide independent mobility for people with 
physical, cognitive, and/or perceptual impairments. The laser 
range finder URG-04LX mounted on the front of the 
wheelchair collects immediate environment information, and 
then the raw laser data are directly used to control the 
wheelchair in real-time without any modification. The central 
control role is an obstacle avoidance algorithm which is a neural 
network trained under supervision of Bayesian framework, to 
optimize its structure and weight values. The experiment results 
demonstrated that this new approach provides safety, 
smoothness for autonomous tasks and significantly improves the 
performance of the system in difficult tasks such as door 
passing.   

I. INTRODUCTION 

Commercial electric – powered wheelchairs traced to the 
1950s [1] have been providing functional mobility for people 
with both lower and upper extremity impairments. With the 
assistance of the wheelchair, these people are capable of 
moving around their home, going to work or doing their 
daily tasks independently. However, challenges of safely and 
independently using their wheelchair can result from various 
overlapping motor, perceptual, or cognitive impairments 
such as spinal cord injury, or cerebral palsy. A survey [2] of 
200 practicing clinicians indicates that many users have 
difficulty controlling power wheelchairs. According to the 
report, nearly half of the people who are unable to control a 
standard power wheelchair can benefit from the assistance of 
an intelligent wheelchair. 

In the design of an intelligent wheelchair, automatic 
obstacle avoidance plays a very important function which 
maneuvers the wheelchair to avoid obstacles while still 
targeting the goal. Some popular classic obstacle avoidance 
methodologies were already applied for the intelligent 
wheelchair application such as potential field [3], or vector 
field histogram [4]. However, as originally developed for 
autonomous mobile robots, these methods are far from 
satisfying all the requirements for a wheelchair system. For 
instance, the user must feel safe and in control of the 
wheelchair; the wheelchair’s reaction to input must be 
intuitive enough to inspire confidence and smooth enough 
for comfortable travel.   
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Our intelligent wheelchair has been developed to create a 
wheelchair system which reduces the physical coordination 
and cognitive effort required from operating the wheelchair. 
Based on a standard commercial wheelchair, our wheelchair 
has been equipped with necessary hardware items such as a 
portable computer, a laser sensor and assistive navigation 
system software which assists it in making control decisions 
related to the user’s intention, avoiding obstacles, and 
performance qualities required to reduce discomfort and 
provide the user with safety perception.   

Like many human-machine systems, our wheelchair is a 
shared control system which takes advantages of the 
capabilities of both the human and machine. In our previous 
work [5], we proposed a method that integrates the human 
and the machine entity into one unity to navigate the 
wheelchair based on probability reasoning. In maneuvering 
the wheelchair, one of the major challenges is of uncertain 
information which arises both from noise and insufficient 
measurements of obstacles from the sensors, and inconsistent 
commands given by the user with disabilities. In our work, 
the uncertain information is modeled and processed under 
the Bayesian recursive technique to find the most appropriate 
direction of travel for the wheelchair.  

Being aware of constraints on the behavior of the system 
for human users, and overcoming shortcomings of existing 
obstacle avoidance methods, a neural network obstacle 
avoidance strategy was first proposed for our wheelchair [6]. 
This method relies on the capability of neural networks to 
learn how to react in certain difficult situations. After 
training, the neural network controls the wheelchair to avoid 
obstacles in real-time. Avoidance maneuvers are automatic 
and occur in real time. Experimental results have shown that 
this technique allows the wheelchair to move smoothly 
through a cluttered environment filled with both moving and 
stationary obstacles.  

The main goal of this paper is to propose and implement 
an extension of the neural network obstacle avoidance based 
on Bayesian framework. Instead of calculating free-spaces 
following the wheelchair dimensions, the network will learn 
to act based on the raw laser data. This proposal provides 
safety, smoothness and significantly improves the 
performance of the system in difficult tasks such as door 
passing. This paper is organized as follows. An overview of 
the intelligent wheelchair is provided in Section II. In 
Section III, a strategy of obstacle avoidance for the 
wheelchair will be presented. In section IV, experimental 
results of proposed method are described to demonstrate the 
performance of the assistive navigation system. Finally, a 
conclusion of our study is drawn in Section IV.   
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II. THE INTELLIGENT WHEELCHAIR SYSTEM 

A completed hardware description of our intelligent 
wheelchair is presented in [5, 6]. The wheelchair based on a 
commercial wheelchair has been modified to attach 
additional items: a Mac mini computer with 2.66 GHz Core 
2 Duo Processor attached behind a chair, user interfaces, and 
measurement sensors.  

User interfaces: Besides a standard joystick, there are a 
number of a novel user interfaces developed for this 
intelligent wheelchair including a brain-computer interface 
(BCI), or a head-movement system which communicate with 
a computer through NI USB-6008 analog ports or a control 
system through iPhone 4/iPad employing wireless 
communication.  

Sensors:

The wheelchair, with this modification, allows the user to 
operate in both manual mode and assistive mode. By 
assistive mode operation, the system interrupts the 
connection between the wheelchair joystick and wheel motor 
controllers. User interface signals are read by the computer. 
In this way, the computer can monitor what the user wants 
the wheelchair to do. Another important information source 
is the laser-based obstacle detection. The URG-04LX is used 
to assemble data pertaining to the wheelchair's immediate 
environment. When they are available, uncertainty of these 
data is modeled to find the direction of travel where the user 
is likely to go. Concerned with avoiding obstacles, and other 
additional requirements, the trained neural network obstacle 
avoidance makes final decisions about editing the direction 
of travel and the speed of the wheelchair.  

 A laser range finder URG-04LX is mounted in 
front of the chair to provide information about the distance to 
the nearest obstacles in the direction of travel. In this 
application, the sensor is asked to scan a 1800 front area with 
maximum radius 4m and angular resolution 1.080 in a 10-
millisecond loop.   

The assistive navigation software is built based on a 
multithreading technique in Labwindows/CVI platform. All 
tasks described above are separated into four threads which 
are performed simultaneously: User interface reading thread, 
URG-04LX reading thread, Semi-autonomous thread, and 
display thread. From empirical research, the time interval 
between executions of the thread without any error is set at 
10 milliseconds. 

III. METHOD 

A.  Direction of travel 
A set of potential paths for circumnavigation is 

calculated in a number of ways. One of the methods is to 
enlarge surrounding obstacles to determine free-spaces [6]. 
However, the fact that obstacles are extended based on the 
wheelchair’s dimensions, a safe distance, and orientation, 
makes doorways or narrow paths a challenge. As illustrated 
in Fig. 1.a, a doorway that is actually traversable by the 
wheelchair is blocked by extended obstacles. As a result, the 
wheelchair fails to enter the door. Furthermore, this method 
is quite complicated and time-consuming due to many 
calculation steps.  

In this paper, the information about surrounding 
obstacles is used in a direct way to navigate the wheelchair. 
First, a number of potential paths are determined based on 
their sizes. As shown in the Fig. 1.b, the wheelchair 
measures the size of the doorway opening by calculating 

. . cos( )2 2AB OA OB 2 OAOB= + − −β α , if the size is 
greater than the wheelchair’s width size plus a safe distance, 
it is considered as one of potential paths of travel. These 
potential paths, then, are combined with a user’s command to 
find the most suitable direction of travel through a Bayesian 
recursive technique as presented in [5]. This technique uses a 
probabilistic model to solve uncertainty of signals caused by 
the limitation of devices and inconsistent commands given 
by the impaired user. 

B.  Bayesian neural network obstacle avoidance 

1. Neural network 

Fig. 2 shows a feed-forward neural network obstacle 
avoidance designed to provide a framework for representing 
non-linear functional mappings between a set of input 
variables and a set of output variables, 2 outputs 
corresponding to two electrical signals sent to the motor 
controller. The input layer, having 37 inputs, includes a 
direction of travel and 36 inputs of obstacle distances from 
the laser data. Although the laser data contains 180 data 
points corresponding to 1 degree resolution, the minimum 
data point in each 5 degree is chosen as the input value.   
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Fig 2. Feed-forward neural network structure for obstacle avoidance 
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Fig 1. a) The wheelchair at traversable doorway blocked by extended 
obstacles; b) Determining a potential path  
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The number of hidden nodes is allowed to vary during 
the training process and Bayesian framework estimates the 
most probable structure and weight values of the network 
after training. 

2. Bayesian Framework 

The Bayesian approach [7], first introduced by MacKay, 
provides a framework to find the most probable model 
corresponding to the training data D in automatic fashion.  
Instead of finding a single set of values of the network 
weights as maximum likelihood techniques, the Bayesian 
learning considers Gaussian probability distribution over 
weight values. In particular, once the training data D has 
been observed, the posterior distribution of the weights w in 
network H can be calculated by using Bayes’ theorem. 

( | , ) ( | )( | , )
( | )

p D w H p w Hp w D H
p D H

=
 

Where p(D|w,H) is the likelihood that contains 
information about the weights from observations and the 
prior distribution p(w|H) contains information about 
background weight set. The p(D|H) is known as the evidence 
of the network H. 

The most probable value for the weight vector wMP, 
corresponding to the maximum of the posterior distribution, 
can be found by minimizing a cost function S(w)  

( ) D wS w E E= +β α  

Where ED is an error function, Ew is the sum square of 
weight value, and α, β know as hyper-parameters.  

The hyper-parameters are re-estimated until the cost 
function value ceases to change significantly between 
consecutive re-estimation periods. After the network training 
process is completed, the log evidence of network Hi having 
M hidden nodes is computed as follows [8] 
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The process is repeated for a number of different 
networks, and the best network is selected with the highest 
log evidence value. 

IV. EXPERIMENT RESULT 

1. Training Neural Network 

Acquisition experiments are implemented to collect 
training data. Software built in NI Labwindows CVI 2010 is 
used for this purpose. The wheelchair is manually driven to 
follow a number of pre-designed paths by a standard 
joystick. At the same time, the software collects all 
surrounding obstacle distances to the wheelchair by using the 
laser range finder URG-04 LX and control signals from the 
joystick with 100ms sampling time. Each sampling time, all 
data from URG-04LX passed through a low pass filter to 
remove noise, and a desired direction of travel are recorded 

as input values. Plus two signals from the joystick are 
recorded as target values. Total samples gathered during the 
experiment were 1200 and all data were used for training 
purposes. 

It is noticed that the number of pre-designed paths should 
include various environmental types such as a narrow space, 
walls, doorways, moving obstacles. Depending on obstacle 
clearance level, the wheelchair is driven accordingly. For 
example, when the obstacles are still at a distance, the 
wheelchair would be driven to be close to the direction of 
travel and at a high speed. In contrast, when moving between 
two closely space obstacles such as the posts of a doorway, 
the wheelchair would decelerate, and be centered with the 
doorway. In this situation, a slight difference between a 
steering angle and the desired direction is usually acceptable. 

A training program based on Bayesian framework was 
written in Matlab R2009b environment, and the hidden 
nodes of the network were set to vary from 1 to 10, each 
network structure was repeatedly trained 3 times for 
consistency. As shown in Fig. 3, the feed forward neural 
network architecture with 6 hidden nodes yielded the highest 
evidence. This structure and its weight values were extracted 
into a text file, and then loaded into the software to control 
the wheelchair. 

2. Experiment 1 

Experiment 1 was performed in order to evaluate the 
performance of the automated assistive navigation system of 
the wheelchair. The user commands activate the wheelchair 
to move forward at start, then turn right, forward, turn right 
again and stop, all through the iphone interface control. The 

 
Fig 4.The automated assistive navigation system’s performance 
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Fig 3. Estimation of log evidence for hidden nodes 
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experiment was conducted in the laboratory room in which 
both static obstacles (walls, chairs, a couch) and dynamic 
obstacles (person walking) are present. The figure 4 showed 
the trajectory of the assistive navigation system performance 
(the blue path). Starting from A, the wheelchair smoothly 
moves to B with an average speed 0.78 m/s. As a turn right 
command and a right path are available, the direction BC 
heading to the middle of the door is determined. However, 
concerning the distances to obstacles, the neural network 
obstacle avoidance strategy modified the direction BC to 
safely avoid obstacles and create a curve to enter the center 
of the doorway. The speed of the wheelchair in section BC 
slowly decreased while approaching the door with an 
average speed 0.34 m/s.  After performing section DC 
parallel to the wall with 0.65 m/s, the wheelchair slightly 
turns right to avoid the person walking, then enters the next 
door with an average speed 0.31 m/s.  

3. Experiment 2 

Another experiment was conducted to demonstrate the 
ability of the new method to pass between closely spaced 
obstacles such as a door. In this experiment, a door having a 
changeable width from 0.65m to 1.2m (the wheelchair’s 
width is 0.64m) was used.  For a performance comparison 
purpose, the wheelchair was steered through the door by 
three different objects: An experienced human user 
employing a joystick (assume as a “perfect performance”), 
the assistant navigation software using the neural network 
obstacle avoidance based on the laser raw data via iphone 
interface, and the software using the neural network obstacle 
avoidance based on the compensate data developed in [6] via 
iphone interface. Each object repeatedly steered the 
wheelchair through the door 10 times for each door’s width. 
The percentage of successful passing per each door’s width 
was record in the Fig. 5. 

The Fig. 5 showed that, with the new method, the 
performance of the wheelchair for the door-passing task is 
significantly improved. The percentage of successful passing 
increases from 20% to 50%, 60% to 80%, and 90% to 100%, 
corresponding to door’s width 0.8m; 0.9m; 1m,  when 
comparing to the method developed in [6]. This results from 
the advantages affected by the new method. First, the 
wheelchair always heads to the door as long as the opening 
of the door is greater than the chair’s width plus a safe 

distance.   With the method using compensated data, the 
blocked door caused by extended door pots prevents the 
wheelchair from successfully entering the door during the 
navigating process. Second, the faster and more accurate 
response of the new method would make the system more 
stable and contributes to passing door success.  

However, the experiment also shows while an 
experienced user can consistently steer the wheelchair to 
pass through the door with small widths (0.7m or greater), 
the software with the new algorithm still has a low successful 
percentage of passing with 10% and 50% corresponding to 
width of the door of 0.7m and 0.8m respectively.  

V. CONCLUSION 

This paper presents a new approach to reduce 
computational cost and improve the stability of the algorithm 
in real-time. The experimental results suggested that the 
performance of the system with the new approach was 
significantly improved, especially in difficult tasks such as 
door-passing. Overall, our wheelchair based on the Bayesian 
neural network obstacle avoidance strategy has proved its 
potential as an effective approach to provide independent 
mobility to people with impairments.   

However, there are still unsolved problems. As shown 
above, the wheelchair is not consistently able to pass through 
the doorways of the width which is less than 1m. In addition, 
the laser range finder URG-04LX cannot detect transparent 
obstacles and only detects obstacles the same height as the 
sensor. To solve these problems, the current focus of our 
research is to develop a special neural network obstacle 
avoidance strategy which is only active to control the 
wheelchair in narrow spaces like doorways. Also, a 
combination of the URG-04LX with different types of 
sensors is being considered to overcome the shortcomings of 
the URG-04LX. 
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