
  

 

Abstract— Pattern recognition can provide intuitive control 

of myoelectric prostheses. Currently, screen-guided training 

(SGT), in which individuals perform specific muscle 

contractions in sync with prompts displayed on a screen, is the 

common method of collecting the electromyography (EMG) 

data necessary to train a pattern recognition classifier. 

Prosthesis-guided training (PGT) is a new data collection 

method that requires no additional hardware and allows the 

individuals to keep their focus on the prosthesis itself. The 

movement of the prosthesis provides the cues of when to 

perform the muscle contractions. This study compared the 

training data obtained from SGT and PGT and evaluated user 

performance after training pattern recognition classifiers with 

each method. Although the inclusion of transient EMG signal in 

PGT data led to decreased accuracy of the classifier, subjects 

completed a performance task faster than when compared to 

using a classifier built from SGT data. This may indicate that 

training data collected using PGT that includes both steady 

state and transient EMG signals generates a classifier that more 

accurately reflects muscle activity during real-time use of a 

pattern recognition-controlled myoelectric prosthesis. 

I. INTRODUCTION 

Pattern recognition is an intuitive control technique for 
upper limb myoelectric prostheses, as it predicts an 
individual’s intended movement by decoding their muscle 
signals. In order to train a pattern recognition-controlled 
prosthesis, myoelectric signals representative of each 
movement of the prosthesis must first be collected [1]. 
Typically this has been done through use of screen-guided 
training (SGT). Individuals are prompted to perform specific 
movements using images displayed on a screen, and the 
corresponding electromyography (EMG) data is sampled 
[2,3,4]. This data collection method requires the ability to 
connect to a display. Screen prompts allow for customization 
of the information displayed to individuals; however, they 
also require patients to make a cognitive transformation 
between the two-dimensional prompt and the movement of 
their residual limb. SGT can be used to train a pattern 
recognition system even if a socket and prosthesis are not 
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currently available. If the individual is wearing the 
prosthesis, it remains still throughout SGT. 

Prosthesis-guided training (PGT) is a new way to collect 
the myoelectric signals necessary to train a pattern 
recognition system during which individuals are prompted by 
the movement of the prosthesis itself [5]. The prosthesis 
moves one degree-of-freedom at a time and users follow 
along with these movements as EMG data is sampled. For 
example, once PGT is initiated, the prosthesis actuates one 
degree-of-freedom, say the elbow. As the prosthesis is driven 
into elbow flexion, the individual performs a similar elbow 
flexion muscle contraction; when the prosthesis stops 
moving, the individual relaxes. Then the prosthesis is driven 
into elbow extension and the individual similarly follows 
along by performing an elbow extension muscle contraction. 
PGT continues actuating each individual degree-of-freedom 
with the prosthesis user contracting his or her muscles for 
each respective movement of the prosthesis, always relaxing 
their muscles when the device is at rest. Users know that 
PGT is complete after all movements have been performed 
and the prosthesis remains at rest. The pattern recognition 
classifier is quickly built and the individual can immediately 
begin controlling the prosthesis. The entire process takes 
about one minute for a four degree-of-freedom system. 

One advantage of PGT is that it requires no additional 
hardware and can be initiated simply with the press of a 
button. Individuals would be capable of training their pattern 
recognition-controlled prosthesis anywhere in their home or 
community. This training method provides users with a real-
time demonstration of each movement to be performed and 
keeps the individuals’ focus on the prosthesis, where it will 
be during actual use. Thus PGT avoids the additional 
visuomotor transformation from a static visual cue to a 
dynamic motor output.   

During PGT, the user is instructed to not anticipate 
prosthesis movements and contract their muscles only when 
the prosthesis moves. This ensures that both transient and 
steady state EMG data are collected. Inclusion of both 
transient and steady state data is thought to improve the 
robustness of the resulting classifier [6]. Custom algorithms 
separate the muscle contraction data from the rest data such 
that only muscle contraction data is used to train each 
movement class. Collecting data while the prosthesis is 
moving also ensures that EMG signal changes due to limb 
stabilization are recorded in the training data.   

The goal of this study was to compare users’ pattern 
recognition performance following SGT and PGT. We 
hypothesized that both training methods would collect 
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Figure 1. EMG mean absolute value, summed across all channels, for contractions that Participant S1 performed during one repetition of each movement 
class for SGT and PGT. EE, elbow extension; EF, elbow flexion; FP, forearm pronation; FS, forearm supination; WE, wrist extension; WF, wrist flexion; 
HC, hand close; and HO, hand open. Data points collected during a motion class but relabeled as rest data by the custom algorithm are shown in dark gray. 

 

slightly different sets of data but that both would allow 
subjects to control the prosthesis. 

II. METHODS 

A. Participants 

Two individuals participated in this study: one male 
participant with bilateral shoulder disarticulations (S1) and 
one male participant with a right transhumeral amputation 
(S2). Both had undergone targeted muscle reinnervation 
(TMR) surgery, during which nerves that previously 
innervated muscles in the amputated limb are transferred to 
muscles that are no longer biomechanically functional, 
allowing their neural signals to be captured via surface EMG 
[7]. Participants had experience controlling pattern 
recognition-controlled systems and gave written informed 
consent. 

B. EMG and Pattern Recognition Setup 

Eight bipolar surface EMG electrodes were placed over 
the reinnervated muscle area. The EMG signals were 
amplified and high pass filtered with a cutoff frequency of 80 
Hz for Participant S1 to remove ECG artifact [8], and 20 Hz 
for Participant S2. Data was sampled at a frequency of 1 kHz 
and processed in real-time using custom software [9]. 

Subjects trained the pattern recognition classifier to 
recognize nine classes: elbow flexion, elbow extension, 
forearm supination, forearm pronation, wrist flexion, wrist 
extension, hand open, hand close, and rest. Training data was 
collected using either screen-guided or prosthesis-guided 
training. During SGT, subjects began each muscle 
contraction when prompted by the visual display. During 
PGT, subjects began each muscle contraction when the 
prosthesis began making the corresponding movement. For  

 

both data collection methods, subjects were instructed to 
perform the movements at a comfortable level of effort. Six 
seconds of data per class were used to train a linear 
discriminant analysis (LDA) classifier, and six seconds of 
data per class were used to test the classifier. 

The EMG data from each channel were segmented into 
250 ms analysis windows with a 50 ms frame increment. A 
threshold based on the level of myoelectric activity recorded 
during rest was used to segment the muscle contraction data 
[5, 10]. Any data recorded during a motion class below the 
threshold of 1.1 times the average mean absolute value 
(MAV) during rest were relabeled as rest data prior to 
building the classifier. This thresholding ensured that only 
data during active muscle contractions were used for training 
each motion class; a larger lag between when the prosthesis 
began its actuation and when the individual started to 
perform his or her muscle contractions resulted in more rest 
class data (Fig. 1). Four time-domain features (MAV, wave 
vertical length, number of zero crossings, and number of 
slope changes) and sixth order autoregressive coefficients 
[11] were extracted from the EMG data. The resulting LDA 
classifier was used to control a prosthesis with the four 
trained degrees of freedom. A 500 ms velocity ramp 
minimized the impact of real-time classification errors by 
decreasing the initial speed of the prosthesis each time it 
changed motions [2]. 

C. Performance Evaluations  

Offline classification error was calculated for SGT and 
PGT to assess the separability and repeatability of the data 
collected with each method. Accuracy was also calculated 
between training methods (i.e., trained with SGT and tested 
with PGT and vice versa) to compare the content of the data 
obtained from the two methods. These calculations were 
done for classifiers built from the transient and steady 
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TABLE I. CONFUSION MATRIX FOR S1, DATA TRAINED WITH SGT AND TESTED WITH PGT 

Prompted 

Motion 

Predicted Motion 

Rest EF EE FS FP WF WE HO HC 

Rest 83 5   12     

EF 2 98        

EE 11 4 82  2  1   

FS 2 4  91 4     

FP 5 1 1  92 1    

WF  8  5 17 69    

WE 1 8  6 4  81   

HO 15 21 2  33   29  

HC 2 18  1 36 3  3 36 

 

TABLE II. CONFUSION MATRIX FOR S1, DATA TRAINED WITH PGT AND TESTED WITH SGT 

Prompted 

Motion 

Predicted Motion 

Rest EF EE FS FP WF WE HO HC 

Rest 62    25   12  

EF 4 81   5   11  

EE 2  59  27   13  

FS    86 13    1 

FP     98    2 

WF     5 92  3  

WE    1 13  85 2  

HO        100  

HC      1   99 

 

state EMG and only the steady state data in order to examine 
the impact of the transient EMG signal that is more 
frequently captured in prosthesis-guided training data. 

Subjects performed a clothespin placement test [7] to 
measure the real-time controllability of the prosthesis. The 
test involved moving clothespins from a horizontal bar to a 
vertical bar and required use of the elbow, wrist, and hand. 
The time required to move three clothespins was recorded. 
The test was repeated until subjects completed three tests 
without dropping a clothespin. 
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Figure 2. Average classification error calculated for classifiers trained and 
tested with data from A) the same training method and B) the opposite 
training method. Error bars are standard deviation. 

Subjects completed these tests alternating between using 
SGT and PGT to train the prosthesis. Each method was 
tested three times. The first time was considered practice, 
and the second and third times were used for analysis. 

III. RESULTS 

The EMG MAV from training data shows differences 
between the myoelectric activity collected during SGT and 
PGT (Fig. 1). SGT captures primarily sustained muscle 
contractions, whereas PGT often captures the onset and 
termination of the contractions in addition to the steady state 
movement. 

Using the transient and steady state data to train the 
classifier, SGT resulted in fewer classification errors than 
PGT; however, using only the steady state data, SGT and 
PGT give similar levels of accuracy (Fig. 2A). 

Using the transient and steady state data, classifiers 
trained with SGT and tested with PGT have higher error 
rates than those trained with PGT and tested with SGT. The 
corresponding confusion matrices are shown in Tables 1 and 
2. However, using only the steady state data, these tests show 
a similar level of accuracy (Fig. 2B). 

Subjects completed the clothespin test faster when PGT 
was used to train the classifier compared to SGT. For 
Participant S1, average completion time was 50.5 ± 10.3 s 
with SGT and 37.7 ± 5.4 s with PGT. For Participant S2, 
average completion time was 25.5 ± 5.8 s with SGT and 21.8 
± 2.6 s with PGT. 

IV. DISCUSSION 

PGT captures the transient EMG without prompting the 
user with a count-down of the next actuated motion. The lag 
between the initiation of actuated prosthesis movement and 
the initiation of the individual’s corresponding muscle 
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contraction likely does not adversely affect the classifier’s 
performance. The data collected during this time is below the 
myoelectric activity threshold and thus is relabeled and used 
in the rest class data set. Similarly, any data collected after 
the prosthesis stops moving and the individual relaxes is 
relabeled and used in the rest class. While this method of 
thresholding was applied to separate the data collected 
during PGT, it was also applied, for consistency, to SGT 
data.  

The inclusion of transient EMG signals in PGT data is a 
main contributor to the observed differences in classification 
accuracy. When looking at classifiers built and tested within 
a training method, pattern recognition classifiers built from 
SGT data or only the steady state portion of PGT data have 
similar levels of error (Fig. 2A). Classifiers built using the 
transient and steady state data recorded from PGT (the only 
data set to include a large amount of transient signals) show 
higher error rates. Hudgins [10] found that transient EMG 
signals were highly separable and contained deterministic 
information; however, a buffer of 256 ms was used to 
interpret the transient signal. It is possible that the sliding 
window approach used to make continuous classification is 
not linearly separable until a sufficient amount of transient 
data has entered the buffer. This is consistent with the 
finding in this study that the PGT-based classifiers had lower 
offline classification accuracies than those generated from 
SGT data.  Modifications to the pattern recognition 
classifier, such as incorporation of a similar buffer or use of 
an alternative to the LDA classifier, may be explored in 
future efforts to enhance PGT performance.   

Despite lower classification accuracies, subjects perform 
as well or better when using the prosthesis trained with PGT. 
While subjects were able to use their prosthesis trained from 
SGT, PGT most likely captures a wider range of data during 
training. This is evident in our results that pattern recognition 
classifiers trained with PGT data and tested against SGT data 
yield fewer errors than those trained with SGT data and 
tested against PGT data. Using the transient as well as the 
steady state EMG to build a classifier can result in a pattern 
recognition system with fewer differences between training 
and real-time use. During use, individuals must perform a 
series of muscle contractions in order to perform a task with 
their prosthesis and those muscle contractions will most 
likely have more transient EMG than steady state. Hargrove 
et al. similarly observed that inclusion of transient signals led 
to lower accuracies but improved performance by healthy 
subjects on a virtual clothespin task [6]. 

The hand open and close degree-of-freedom provides a 
good illustration of including the transient EMG in the 
training data set. Compared with the elbow and wrist, the 
prosthetic hand used during this study had the smallest range 
of motion. While collecting data with PGT, the hand only 
took 1 s to fully open or close instead of the full 3 s as was 
the case for the elbow and wrist range of motion. Since 
individuals timed their contractions to the movement of the 
prosthesis, their hand open and hand close muscle 
contractions contained a proportionally higher amount of 
transient EMG than the other motion classes (Fig. 1). The 

greater amount of transient corresponds to the inability of a 
classifier trained with SGT data, which lacks the transient 
information, to correctly classify hand open and close data 
collected using PGT. Table 1 shows accuracies of 29% and 
36% for these classes, respectively. However, with only a 
small amount of steady state hand open and close data that 
was recorded during PGT, the PGT-based classifier achieves 
accuracies of 100% and 99% for hand open and close, 
respectively, when tested with SGT data (Table 2). 

V. CONCLUSIONS 

PGT could serve as a valuable method of collecting 
training data for pattern recognition systems in both research 
and clinical settings. It allows individuals to easily train or 
retrain their pattern recognition-controlled myoelectric 
device without additional equipment. Further testing is 
needed to see if similar results are found for a greater 
number of amputees with a range of experience levels, 
different levels of amputation, and those individuals who 
have not had TMR surgery.  
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