
 

Abstract— While significant strides have been made in

designing brain-machine interfaces for use in humans, efforts to

decode truly dexterous movements in real time have been

hindered by difficulty extracting detailed movement-related

information from the most practical human neural interface,

the electrocorticogram (ECoG). We explore a potentially rich,

largely untapped source of movement-related information in the

form of cortical connectivity computed with time-varying

dynamic Bayesian networks (TV-DBN). We discover that

measures of connectivity between ECoG electrodes derived

from the local motor potential vary with dexterous movement in

65% of movement-related electrode pairs tested, and measures

of connectivity derived from spectral features vary with

dexterous movement in 76%. Due to the large number of

features generated with connectivity methods, the TV-DBN a

promising tool for dexterous decoding.

I. INTRODUCTION

We aim to find movement-related information in the 
electrocorticogram (ECoG) to aid in studying and decoding 
highly dexterous movements. Human ECoG-based decoding 
has progressed since its first demonstration in 2004 [1], with 
some forays into dexterous decoding, including grasps [2]-
[4]. Classification of contralateral and ispsilateral individual 
finger movement [5] and decoding the time course of 
individual finger tapping [6] have been demonstrated. 
However these offline dexterous decoding achievements have 
not been replicated in a real-time ECoG BMI, in which the 
challenges of asynchronous decoding will require much more 
information-rich signals than are currently available. We have 
demonstrated previously that directional connectivity, a 
description of directed connections between cortical areas, 
provides grasp-related information beyond what is present in 
standard decoding features [7], [8]. We now apply a dynamic 
directional connectivity technique, time-varying dynamic 
Bayesian networks (TV-DBN) [9], to ECoG data collected 
during individual finger flexion and extension. We 
hypothesize that cortical connectivity maps contain 
movement-related variation that may be relevant for 
dexterous decoding.
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II.METHODS

A. Study Participants and Experimental Paradigm

Three subjects undergoing ECoG monitoring in the Johns 
Hopkins Hospital Epilepsy Monitoring Unit gave informed 
consent to participate in research under a protocol approved 
by the Johns Hopkins University Institutional Review Board. 
Subject details are given in Table I.

TABLE I. STUDY PARTICIPANTS

Subject
Gender, 

Age
ECoG Coverage, Pathology

CyberGlove 

Hand

A
Male,

55

Right frontal- parietal- temporal

grid, right parietal operculum /

cortical dysplasia

Left

B Male, 12

Right frontal- parietal grid,

right ventral peri-central

encephalomalacia

Left

C
Female, 

20

Right frontal- parietal- temporal

grid, right frontal- parietal

operculum / cortical dysplasia

Left

Subjects performed motor trials in a seated or semi-prone 
position in a bed or comfortable chair. The wrist was 
supported with a pillow or table in a comfortable position, 
and the hand was unsupported and free-moving. Trials lasted 
between two and five minutes, with a brief rest between trials. 
Each subject performed one or two trials of the repeated 
flexion and extension task used for this analysis. During the 
trials, subjects flexed and extended each finger several times 
before moving to the next, in a random order. They repeated 
these multiple flexion and extensions between 10 and 35 
times per trial. Subjects were either self-paced, vocally cued, 
or visually cued. In some cases, subjects viewed a virtual 
representation of a prosthetic hand in the MSMS virtual 
environment [10] moving in synchrony with their own hand 
on a computer screen.

B. Data Collection and Pre-Processing

Subjects had been implanted for clinical purposes with 
ECoG electrode arrays (Ad-Tech Medical Instrument Corp., 
Racine, WI) with between 64 and 128 platinum electrodes, 4 
mm in diameter and spaced 10 mm apart. Electrode locations 
are shown in Fig. 1. ECoG was recorded on Stellate (Stellate 
Systems, Inc., Montreal) and Neuroscan (Compumedics, 
Charlotte, NC) amplifiers at 1000 Hz.
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Subjects wore a glove (CyberGlove Systems, LLC, San 
Jose, CA) on the hand contralateral to the brain hemisphere to 
track 18-22 joint angles at 25 Hz, including all finger and 
thumb joint angles. ECoG and kinematic signals were 
synchronized by writing time stamps and events to both.

All ECoG channels were screened, and noisy channels 
were excluded from subsequent analysis. Remaining ECoG 
channels were common average referenced (CAR) to remove 
information such as artifacts and noise that were common to 
all channels. ECoG data were then band pass filtered from 0.1 
to 250 Hz.

C. Feature Extraction

Both temporal and spectral features were used in the 
analysis. The temporal feature was the local motor potential 
(LMP), which has been used in a number of brain-computer 
interface kinematic decoders [11], computed with a window 
size of 500 ms. The LMP is the ECoG smoothed with a 
moving average window and was found using:

LMP (t )n=
1

T
∫
t�τ

t

X (t )ndt , (1)

where T is the window size, t  is the time, and X(t)n is the 
ECoG data from one channel, n.

Spectral features were average power in the delta (0-4 
Hz), theta (4-8 Hz), mu (8-13 Hz), beta (14-30 Hz), low 
gamma (31-50 Hz), and high gamma (70-110 Hz) bands. 
Spectral power was calculated in 1 Hz bins with an 
autoregressive model using the Burg method of order 20 on 
windows of 1 s.

D. Electrode Selection

We used the electrode activation index (AI) to select a 
subset of electrodes for connectivity analysis. The AI is a 
measure of how much ECoG channel activity varies with 
movement. We found the cross-correlation coefficient [12] 
for all features between movement and rest states:

F=∣ (m�r )3

∣m�r∣σm∪r

2

N m N r

N m∪r

2 ∣ (2)

Here m is the mean feature value during movement, r is the 
mean feature value during rest, N is the number of samples in 
each state, and σ2

m⋃r is the variance across all states. Then the 
AI for an ECoG channel was the largest change across all 
features between movement and rest states. To also find 
features that varied prior to movement or after movement 
onset, AI was calculated for m windows shifted 25 samples (1 
s) preceding and following movement onset. For subsequent 
analysis we used the ten ECoG channels with maximum AI.

E. Connectivity Calculation

Time-varying dynamic Bayesian networks (TV-DBNs) 
were used to map connectivity between ECoG channels, as in 
[7]. A TV-DBN's connectivity coefficient from channel i to j  
is high if activity in channel i at time t–1 can be used to 
model activity in channel j at time t. For each ECoG feature, 
amplitude in all N channels used for the analysis was 
represented at time t as a vector, Ft = (f1

t, f2
t, …, fN

t), which 
could be modeled as a function of previous feature amplitude:

Ft = AtFt–1 + ε (3)

The matrix At contained the connectivity coefficients from 
each channel i to each channel j. To create a stable estimate 
of At, we used data from time 0 to t–1, weighted by a 
Gaussian RBF kernel so that data at t–1 was most heavily 
weighted and preceding data was weighted decreasingly in 
the model as it became more distant from t–1. Formally, we 
minimized the criterion:

Âi

t=argmin
Ai

t∈ R
1×N

1

T
∑
τ=1

t�1

w
t ( τ) f i

τ�Ai

t
F

τ�1+λ∥A i

t∥  (4)

where N is the number of ECoG channels, the parameter λ is 
a regularization term to shrink A's spareness (λ=100 [9]), and 
the weight of an observation at time τ is given by the 
Gaussian RBF kernel wt(τ):

w
t( τ)=

K h( τ�t)

∑
τ=1

t�1

K h( τ�t )

, where K h(.)=e
�t

2/h

(5)

We used 5 for the kernel bandwidth, h [9].

We used TV-DBNs to explore cortical connectivity 
during dexterous movement in the three subjects tested. TV-

Figure 1. 

Reconstructions of cortex and electrode locations for all subjects. Electrodes for which electrical stimulation mapping (ESM) caused motor responses are 

filled black, electrodes for which ESM caused sensory responses are marked with an “X”, and electrodes for which ESM cased both motor and sensory 

responses are marked with a “/”. ESM is a commonly-used tool for identifying brain functional areas.
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DBN maps were constructed with the LMP and all spectral 
features.

III. RESULTS

A. Local Motor Potential and Connectivity

We have previously found a relationship between LMP-
based connectivity and grasp during a slow hand open and 
close task [7], [8]. Fig. 2 demonstrates that LMP-based 
connectivity also changes with more rapid individual finger 
flexions and extensions. In two subjects the TV-DBN 
connectivity fluctuated in an oscillatory pattern. Across the 
three subjects, the LMP distribution changed statistically 
significantly between movement and baseline (Wilcoxon rank 
sum test with Bonferroni correction, p < 0.05) in 126 
electrodes, or 54% of all electrodes, whereas the LMP-based 
TV-DBN connectivity changed statistically significantly from 
baseline in 176 channel-channel connectivity pairs, or 65% of 
the 270 channel pairs tested. This large number of movement-
related features may help to inform a decoder for dexterous 
movement. This is a small fraction of the 53,130 total channel 
pairs that could have been explored with TV-DBN across all 
three subjects; we limited our selection to ensure we obtained 
results that are relevant to real-time decoding, which will 
require rapid computation that is only possible when 
analyzing a few channels with TV-DBN.

B. Spectral Features and Connectivity

One group has previously studied the response of TV-
DBN connectivity coefficients constructed from activity in 
the alpha band of EEG activity during movement imagery [9]. 

TV-DBN connectivity has not been explored in other 
frequency bands. Fig. 3 shows the average spectrograms for 
subjects A and B, who had exemplary movement-related 
changes in spectral connectivity, as well as plots of average 
connectivity changes in the delta bands (A and B) and gamma 
band (A). Eighty-two percent of all spectral features on all 
channels included in the analysis changed from baseline to 
movement (Wilcoxon rank sum test with Bonferroni 
correction, p < 0.05). The number of channel-channel 
connectivity pairs whose connectivity changed statistically 
significantly relative to baseline ranged from 69-82% for 
individual features. Beta, low gamma, and high gamma-based 
connectivity features changed relative to baseline more often 
than lower frequency features. While the ratio of TV-DBN 
features changing was not higher than that of spectral 
features, with only ten electrodes we found between 357 and 
494 modulating TV-DBN features per subject. 

IV. CONCLUSIONS

We have described changes in cortical connectivity 
related to dexterous movement. In connectivity computed 
from the LMP, oscillatory movement-related activity was 
observed. Connectivity computed from spectral features 
varied, and included both peri-movement increases in delta 
and high gamma connectivity in one subject, and decreases in 
delta connectivity following movement in a separate subject.
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draw conclusions relevant for online motor decoding, which 
is feasible with TV-DBN calculations for ten electrode pairs 
but not for an entire ECoG grid. However with only these ten 
electrode pairs per subject we discovered hundreds of 
movement-related connectivity features. Future work will 
probe the correlation of information contained in these 
features, with an aim to identify large feature sets with highly 
independent information content. Such information-rich 
feature sets may permit dexterous decoding to advance 
beyond simple grasps to individual finger movements.
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