
  

  

Abstract— Rectification of surface EMGs during electrical 

stimulations (ES) is still a problem to be solved. The broad 

band frequency components of ES artifact overlap with the 

EMG spectrum, make this task challenging. In this study, we 

investigate the potential use of empirical mode decomposition 

(EMD) method to remove the stimulus artifact from surface 

EMGs collected during such applications. We hypothesize that 

the EMD algorithm provides a suitable platform for 

decomposing the EMG signal into physically meaningful 

intrinsic modes which can be used to isolate ES artifact. Basic 

EMD is tested on two signals – ES induced EMG and EMG of 

voluntary contractions added with simulated ES signal. The 

algorithm isolates the EMG from ES artifact with considerable 

success. Further, the EMD method along with the energy 

operator -TKEO gives even better representation of the EMG 

signal. However, some high frequency data was lost during 

reconstruction process. Hence, there is further need to 

investigate the relationship between the EMD parameters and 

stimulus artifact properties so that the algorithm can be 

optimized to reconstruct pure artifact free EMG signal with 

minimum lost of data. 

I. INTRODUCTION 

Functional Electrical Stimulation (FES), operates on basic 
principle that the application of electrical current to a nerve 
can elicit the action potentials in neurons that are missing in 
paralyzed muscle [1]. Chronic application of electrical 
stimulation with varying frequencies and pulse widths has 
been used for many clinical and research interventions to 
improve tissue health or voluntary function by inducing 
physiological changes that potentially remain beyond the 
stimulation period [2]. The neuromuscular or 
neurophysiological effects of the ES have often been assessed 
through the collection of surface electromyography (sEMG), 
however the collection of EMG during the ES has been 
difficult to achieve [3, 4]. The most difficult challenge in the 
analyzing the EMG signal collected from electrically 
stimulated contractions is the presence of stimulus artifact. 
The stimulus artifact is a broad band signal with stimulus 
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frequency harmonics and high amplitude and it completely 
engulfs the EMG. Removing the stimulus artifact is a signal 
processing challenge where the power spectrums of both the 
ES stimulus and EMG signal overlap. The standard 
frequency selective methods cannot be used as the filtered 
EMG will be distorted [5]. 

Historically, researchers have modified different 
hardware [6-8] and software [3, 5] approaches to elicit the 
EMG signal albeit each approach has limitations. 
Modifications involving hardware have included suppressing 
the stimulus artifact ‘online’ during signal acquisition 
utilizing a sample-and-hold technique [7]. For these 
techniques to be effective, the M-wave and the artifact spike 
should not overlap in time. A second approach developed by 
Heffer and Fallon, is to remove the artifact by replacing the 
sample points at each stimulus artifact event with values 
interpolated along a straight line, computed from neighboring 
sample points [5]. This technique requires an identifiable 
artifact event and the artifact duration must remain less than 
both the inter-stimulus interval and the time course of the 
action potential [5]. 

Considering the constraints or selective advantages of 
present techniques for artifact reduction in FES based 
experiments, there is a definite need for a robust algorithm, to 
clearly separate out the stimulus signal from the sEMG, 
without the need for prior information about the stimulus. 
Huang et al. have introduced a novel approach for analyzing 
non-stationary and non-linear data called as Empirical Mode 
Decomposition (EMD) [9]. This algorithm decomposes the 
signal based on the direct extraction of the energy associated 
with various intrinsic time scales [9], providing the 
opportunity to dissect non-stationary signal such as EMG to 
thoroughly understand the underlying phenomenon. The 
primary purpose of this paper is to determine the utility of 
basic EMD, for the removal ES artifact from the EMG signal. 
The EMG will be collected from one able bodied individual. 

II. METHODS 

A. Data Collection 

All data was collected from a 32 year old, healthy able 
bodied male, with no current or past history of any 
neuromuscular injury or disease. Prior to study participation a 
consent form approved by the Kessler Foundation’s 
Institutional Review Board was signed. 

The research participant was tested in a supine position 
with a bolster (6’ diameter) placed under the knee of the leg 
being tested. The non tested knee was extended and the tested 
knee was flexed, with the shank 30 degrees from the right 
horizontal. Surface EMG (MA-300, Motion Lab Systems, 
Inc., LA.) data were collected for the right rectus femoris 
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(RRF) during ES. ES was delivered by EMPi 300PV FES 
unit (Empi Inc., St. Paul, MN) through symmetrical biphasic 
pulses of 300 µs at 35 Hz applied across a 1000 ohm load. 
During testing the ES electrodes were placed at the medial-
distal ends of RRF, where the subject achieved maximum 
contractions. An EMG electrode (E1) used to collect RRF 
muscle activation was placed midpoint between the two ES 
electrodes. 

B. Data Processing 

Basic Empirical Mode Decomposition  (EMD) 

The process used to decompose a signal x�t� into Intrinsic 
Mode Functions (IMFs) and a residual is called Sifting [9]. 
The steps involved in this decomposition are shown below: 

1. The local maxima and minima are identified. 

2. The local maxima are connected by an envelope 
obtained by fitting cubic spline. The process is repeated 
for local minima. 

3. The mean of upper envelope and lower envelope, m� 
gives the first component which is then subtracted from 
x�t� to give �� 

4. Next, check if �� contains any riding waves and 
asymmetry. If yes, consider �� as a new data to get ��� 
using step 1 to 3. 

5. Repeat this sifting process until ��� is an IMF, 

����	�� 
��� � 	��� � ��                    (1) 

6. Separate  c� from the original signal and repeat the 
process on residual till no further IMFs can be retrieved 
from the signal and we are left with the last residual r�. 
Hence, 

���� � ∑ �� �	r�
�
���                             (2)   

Excessive application of the sifting process can result into 
meaningless IMFs. Hence, the limitation on the standard 
deviation calculated from two consecutives sifting processes 
is used as a stopping criterion for sifting [9]. For our data, if 
the value of this standard deviation was greater than 0.1, the 
sifting process was terminated [9]. Thus the sifting process 
allows the signal x�t� to be decomposed into � IMFs with 
final residual r�. 

Teager-Kaiser energy operator (TKEO)  

To further analyze the signal we applied the Teager-
Kaiser energy operator (TKEO), introduced by [17]. The 
equation for determining the energy (�) of a discrete 
oscillating signal, xn is given as, 

����� � ��
� 
 ����. ��	�                       (3) 

The method simultaneously considers the amplitude and 
the instantaneous frequency of the surface EMG signal. It has 
shown that the TKEO amplifies the energy of the action 
potential spikes thus differentiates between the relaxed and 
contracted muscle [17]. The output signal of EMD is 
basically the EMG signal with residual ES artifact. These 
residual ES has the constant amplitude and the frequency 
(test signal 2) which can be negated by TKEO. Hence, this 
method complements the EMD algorithm, removes the 

baseline noise and improves the visual EMG onset detection 
accuracy. 

III. RESULTS 

Signal 1 will involve the EMG of voluntary muscle 
contractions during ES. Test Signal 2 will be generated by 
adding voluntary muscle contraction collected in the absence 
of ES to the simulated ES signal. This will allow us to 
directly compare the filtered EMG signal with the original 
artifact free EMG signal. 

Test Signal 1: EMG during ES induced contractions  

The data collected from the electrode placed on right 
rectus femoris (RF) during constant amplitude electrical 
stimulations with test subject being asked to produce 
voluntary muscle contractions in supine position, is used as a 
test signal (Fig. 1). The data collection started with 
incrementing the ES until the full extension occurs. The 
subject is asked to produce a voluntary contraction 3s after 
the extension and asked to hold it for next 3s. The ES are 
then linearly reduced. The data is first band pass filtered with 
an FIR filter (�� !"## �	 $20,400) Hz) before the algorithm is 

applied. The basic EMD algorithm decomposed the test 
signal into 13 intrinsic mode functions (IMFs) as shown in 
Fig. 2. As mentioned in almost all of the EMD literature, the 
addition of all these modes and the residual will yield the 
original signal with minimum error. 

 

Fig. 1: The test signal – sEMG from right RF during FES 

Hence, the idea is to decompose the signal into multiple 
modes and add those modes that are not affected by the 
stimulus artifact. 

 

 
Fig. 2: The decomposition performed using basic EMD method to give 

(a) IMFs 1 to 4, (b) IMFs 5 to 8 and (c) IMFs 9-13 

By visual inspection of the data (Fig. 2), the stimulus 
artifact is dominating the first three modes. IMF 4 to 6 appear 

a) b) 

c) 
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as smoothed versions of the EMG signal (of different 
degrees) buried under the stimulus artifact. From IMF 4 
onwards, each mode represents various bands of frequencies 
(high to low order) that constitute the EMG signal. As IMF 1 
to 3 were the artifact affected modes, IMF 4 to IMF 13 are 
added to produce the EMG signal, shown in Fig. 3a. 

 

 

Fig. 3: (a) The reconstructed EMG using EMD algorithm and (b) its 
Fourier transform 

As seen in Fig. 3a, the EMD algorithm was able to 
reconstruct the EMG signal with expected burst of ES 
induced contractions. The reconstructed EMG appears to be 
smoothed version of the original EMG signal. Although the 
algorithm was able to extract the two bursts of voluntary 
contractions, the higher frequency components present in the 
data were lost when IMFs 1 -3 were discarded from the data 
(Fig. 2b). As mentioned in EMD literature, EMD algorithm 
acts as a didactic filter and extracts the modes of frequencies 
from high to low order [19]. Hence IMF 1 and IMF 2 contain 
not only the stimulus harmonics but also high frequency 
components of the EMG data which were lost in the process 
of reconstruction. This suggests that the basic EMD although 
extracts some part of EMG buried under ES signal, it requires 
further conditioning of the signal to get the accurate output. 

Test Signal 2: Voluntary EMG added with the simulated 
electrical stimulation signal 

A train of pulses was generated using the command 

pulstran(t,d,'gauspuls',fp,BW) in Matlab. The 

parameters �, *, �+ and ,- were selected so that the 

generated stimulus signal will match its experimental 
counterpart and have the same specifications such as 
sampling frequency, pulse width, stimulus frequency etc. 

The generated stimulus signal (Fig. 4a) and the EMG 
signal collected during voluntary muscle contractions (Fig. 
4b) were added to produce the test signal shown in Fig. 4c. 

 Basic EMD algorithm successfully extracted the burst of 
voluntary contraction from the overlaid simulated stimulus 
artifact. Further conditioning of this signal using TKEO 
considerably improves the quality of the signal by removing 
the baseline noise as seen in Fig. 5b. However, comparing the 
extracted EMG with the original (Fig. 4b), the high frequency 
data (75-300 Hz) is still lost (see Fig. 5c). 

This indicates that basic EMD is limited as we cannot 
fully isolate the pure EMG data from the discarded IMFs 1-2 
for both the test signals.  

 

Fig. 4: (a) The simulated ES signal, (b) EMG collected during voluntary 
contraction and (c) the test signal generated by adding a and b  

 

 

 

Fig. 5: (a) The extracted EMG signal using basic EMD, (b) conditioned 
filtered signal using TKEO (c) the FFT comparison of the original voluntary 

EMG signal (Fig. 7b) (blue) and the extracted EMG signal (red) 

IV. DISCUSSION 

Extraction of surface EMGs during ES is still a problem 

to be solved. In this study, the potential use of EMD 

methods to remove the stimulus artifact from surface EMGs 

collected ES was investigated. As previously mentioned, 

O’Keeffe et al developed a two stage peak-detection 

algorithm for isolation of EMG from stimulus artifact 

however the method is only effective when the M-wave and 

the artifact spike do not overlap [3]. By comparison, the 

EMD methods (basic EMD and DI-EMD) outlined in this 

paper can distinguish the different modes that constitute the 

EMG signal at any instance of time using method of sifting, 

thus the EMD methods can provide a more optimal platform 

for extraction of M-wave from stimulus spikes. Heffer and 

Fallon removed the stimulus artifact by linear interpolation 

using neighboring sample points to replace the stimulus 

artifact [5]. Their technique is dependent on identification on 

the artifact event and the artifact duration must remain less 

than both the inter-stimulus interval and the time course of 

the action potential [5]. By comparison, the EMD based 

decompositions are simple to perform and do not need prior 

knowledge about signal properties such as artifact durations 

or instances for extracting the EMG as EMD based methods 

are completely driven by the data itself.  

Another advantage of using the EMD methods is the lack 

of delay in the filtered signal and the EMG bursts are 

detected at the exact time of activation. The algorithms, 

while having no complicated filters perform point-by-point 

calculations, which make the methods very accurate in 

a) 

b) 

a) 

b) 

c) 

a) 

b) 

c) 
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identifying the time instances of certain events in time-

frequency representation as well.  

From a physiological viewpoint, the EMD algorithms 

preserve some of the stochastic nature of the EMG signal in 

each mode, thus preserving the EMG physical significance 

whereas the more traditional decompositions performed 

using a FFT or a wavelet, the signal is broken down in 

waves (sine for FFT) that have little to do with the 

physiological processes of muscle contraction. Hence, 

instead of trying to distinguish between the artifact and 

EMG frequencies and then filtering them, EMD algorithms 

separate the signal into the artifact and EMG components in 

a way that preserves the intrinsic properties of each.   

Further, when we applied TKEO algorithm, the resultant 

cleaner signal allowed for identification of burst durations 

due the very effective TKEO onset detection mechanism. 

Considering the intensity of the stimulus artifact, the 

rectified EMG obtained after TKEO is far better a 

representation of the physiological events occurring during 

the trial.  If one is solely interested in the qualitative analysis 

of EMGs such as detection of EMG bursts at specific 

instances of time during any FES application, the basic 

EMD with TKEO, both serves as useful tool for signal 

analysis.  

For this case study we investigated data for one able 

bodied individual as a first step towards proof of concept of 

our method. Future work needs to expand our: i) sample size 

of able bodied individuals and ii) analyses to include 

individuals with paralysis. The question still lingering is - 

can we trust the reconstructed signal as we are still losing 

some of the higher harmonics using basic EMD? Working 

with the EMG data collected from a stimulated paralyzed 

muscle we do not want to lose any small activity in the 

signal because that activity might be the only activity 

present. We also don’t want to identify any false activity 

(stimulus harmonics) as a muscle response to the stimulus. 

In the process of filtering EMG signal, we discard first two 

IMFs for basic EMD. Ideally, we would like to have only 

stimulus artifact to be present in the first two IMFs and pure 

EMG data in the remaining IMFs. Hence, it will be 

interesting to further investigate the relationship between the 

algorithm parameters (e.g. order of spline fitting, number of 

sifting iterations) and the extracted IMF characteristics.  

V. CONCLUSION AND FUTURE WORK 

We hypothesized that the EMD provides a suitable 

platform for isolating the non-stationary EMG signal from 

ES artifact by decomposing the signal into physically 

meaningful IMFs. The EMD method along with TKEO 

gives much better representation of the EMG signal. The 

data driven nature of these algorithm, accuracy of the onset 

detection, no system delays make these methods extremely 

suitable for EMG analysis in FES applications where even a 

simple visual assessment of collected EMG is difficult. 

However, there is further need to investigate the relationship 

between the EMD parameters and IMF properties potentially 

implementing a more automated approach for identifying the 

IMF’s components. Also, different variations of EMD such 

as Doubly-Iterative (DI) EMD which provides flexibility 

with selecting the sifting parameters could also be tested in 

conjunction with more advanced EMD algorithms such as 

Ensemble EMD that can overcome mode mixing problem 

introduced by the conventional EMD algorithm. 

ACKNOWLEDGMENT 

Authors would like to thank Megan Damcott, Jerome 

Andre, Fend Wei, Arvind Ramanujam and Erica Garbanini 

for carrying out the data collection for this project.  

REFERENCES 

[1] P. Peckham, J. Knutson, “Functional Electrical Stimulations for 

Neuromuscular Applications,” Annual Review of Biomedical 

Engineering, vol. 7, no. 1, pp. 327-360, Aug 2005. 

[2] T. Thrasher, M. Popovic “Functional electrical stimulation of walking: 

Function, exercise and rehabilitation,” Annales de re´adaptation et de 

me´decine physique, vol. 51, pp. 452-460, 2008. 

[3] D. O’Keeffe, G. Lyons, A. Donnelly, C. Byrne, “Stimulus artifact 

removal using a software-based two-stage peak detection algorithm,” 

Journal of Neuroscience Methods 109, vol. 109, pp. 137-145, 2001. 

[4] D. Collins, D. Burke, S. Gandevia, “Sustained contractions producded 

by plateau-like behavior in human motoneurones,” Journal of 

Physiology, vol. 531, no. 1, pp. 289-301, 2002. 

[5] L. Heffer, J. Fallon, “A novel stimulus artifact removal technique for 

high-rate electrical stimulation,” Journal of Neuroscience Methods, 

vol. 170 pp. 277–284, 2008. 

[6] B. Tracey, S. Krishnamachari, “Automated Stimulus Artifact Removal 

for Nerve Conduction Studies,” 28th International IEEE EMBS 

Conference, Vol. 27, no. 2, pp. 6360 – 6363, Aug 2006 

[7] J. Freeman, “An electronic stimulus artifact suppressor,” 

Electroencephalography and Clinical Neurophysiology, vol. 31, no. 2, 

pp. 170-172, 1971. 

[8] T. Wichmanna, A. Devergnas, “A novel device to suppress electrical 

stimulus artifacts in electrophysiological experiments,” Journal of 

Neuroscience Methods, vol. 201, pp. 1-8, 2011. 

[9] N. Huang, Z. Sheng, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. 

Tung and H. Liu, “The empirical mode decomposition and the Hilbert 

spectrum for nonlinear and non-stationary time series analysis,” 

Proceedings of Royal Society London, vol. 454, pp. 903-995, 1998. 

[10] H. Liang, Z. Lin, R. McCallum, “Artifact reduction in 

electrogastrogram based on empirical mode decomposition method,” 

Medical and Biological Engineering and Computing, vol. 38, pp. 35-

41, 2000. 

[11] Y. Kopsinis, S. McLaughlin, “Improved EMD Using Doubly-Iterative 

Sifting and High Order Spline Interpolation,” EURASIP Journal on 

Advances in Signal Processing, vol. 2008, 2008. 

[12] Y. Kopsinis, S. McLaughlin, “Investigation and performance 

enhancement of the empirical mode decomposition method based on a 

heuristic search optimization approach,” IEEE Transactions on Signal 

Processing, vol. 56, no. 1, pp. 1-13, 2008. 

[13] H. Liang, Q. Lin, J. Chen, “Application of the Empirical Mode 

Decomposition to the Analysis of Esophageal Manometric Data in 

Gastroesophageal Reflux Disease,” IEEE Transactions on Biomedical 

Engineering, vol. 52, no. 10, pp. 1692-1701, 2005. 

[14] H. Liang, S. Bressler, R. Desimone, P. Fries, “Empirical mode 

decomposition: a method for analyzing neural data,” Neurocomputing 

vol. 65, no. 66, pp. 801–807, 2005. 

[15] J. Lindsen, J. Bhattacharya “Correction of blink artifacts using 

independent component analysis and empirical mode decomposition,” 

Psychophysiology, pp. 1-6, 2010. 

[16] N. Krupa, M. Ali, E. Zahedi, S. Ahmed, F. Hassan, “Antepartum fetal 

heart rate feature extraction and classification using empirical mode 

decomposition and support vector machine ” Biomedical Engineering 

Online, vol. 10, no. 6, 2011. 

[17] X. Li, P. Zhou, A. Aruin “Teager-Kaiser Energy Operation of Surface 

EMG Improves Muscle Activity Onset Detection,” Annals of 

Biomedical Engineering, vol. 35, no. 9, pp. 1532-1538, 2007. 

1850


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

